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Summary 

 

Customized cellular material is a relatively new area made possible by 

advancements in rapid manufacturing technologies.  Rapid manufacturing is ideal for the 

production of customized cellular structure, especially on the meso scale, due to the size 

and complexity of the design.  The means to produce this type of structure now exist, but 

the processes to design the structure are not well developed.  The manual design of 

customized cellular material is not realistic due to the large number of features.  

Currently there are few tools available that aid in the design of this type of material.  In 

this thesis, an automated tool to design customized cellular structure is presented. 

 The tool developed to design cellular material uses a surface as input.  The 

surface is broken into two-dimensional finite elements, with the goal of creating square-

shaped elements.  The input surface and finite element mesh are then offset a uniform 

distance from the input surface to create a volume.  The matching two-dimensional 

meshes on the input and offset surfaces form three-dimensional elements that are filled 

with cellular material primitives.  The result is a continuous cellular material design that 

covers the input surface. 

 The tool is tested on a number of example surfaces.  The results show that cellular 

material can effectively be produced for a variety of different surface types.  Mesh on the 

input surface is generally good quality, especially in areas away from boundaries.  The 

offset function is very accurate, and work done to make offsetting more efficient was 

successful.  Finally, a uniform layer of cellular structure is created with no continuity or 

orientation errors, which is the desired result. 
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1 Introduction 

Additive manufacturing, often referred to as rapid prototyping, is capable of 

producing a vast array of structures, some of which would be impossible or infeasible 

using more traditional manufacturing methods.  One application is the use of integral 

meso-scale cellular structures, such as truss elements, to modify the performance of 

structural elements.  Meso-scale cellular structures offer lightweight stiffness solutions, 

as with traditional materials such as “honeycomb” core.  The first step in producing this 

type of structure is to design an initial configuration of cells and populate them with a 

specific type of structure. 

The focus of this research is to develop a method to generate one or more layers 

of meso-scale cellular structure for a given surface.  The goal is to input an STL 

representation of the surface and to produce an array of cellular structures to cover the 

area, which can further be used in the design of integral structural elements.  From the 

input surface, an offset surface will be calculated, and both will be parameterized by a 

grid.  Hexahedral mesh will be generated between the surfaces, which can be populated 

with a variety of cellular structures. 

1.1   Background 

Additive manufacturing is a relatively new technology which is changing the 

boundaries of design.  Improvements to the speed and accuracy of additive techniques 

have opened an almost limitless window of design opportunities.  On paper, almost any 
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shape or configuration is possible, and the only constraint is the imagination of the 

designer.  In reality, however, there is a barrier between the designer’s mind and the 

finished product.  Transferring an idea from paper to the computer interface for 

production can create considerable obstacles. 

This thesis focuses on the area of customized meso-scale cellular structure, in 

particular trusses.  Figure 1.1 shows an example of the difference between a uniform 

truss, which contains struts that are of constant size and regular repetition, and a custom 

mesh, which fits to a specified surface and has struts of varying size and spacing.  The 

uniform truss can be easily designed and mass produced.  The custom truss is more 

challenging.   

 
 

 
Figure 1.1:  Uniform and custom lattice examples 

 
 
 

For most applications, the design of custom cellular structure requires a large 

number of small unit cells to cover a surface or fill a volume.  To design this type of 

structure manually would take considerable time and skill, even for relatively simple 

surfaces.  The meso-structure could comprise thousands of individual elements that 

would each have to be placed independently, making even modest applications infeasible.  

The purpose of this thesis is to develop a tool to aid in the design of meso-scale cellular 

structure. 

Uniform Lattice Custom Lattice 
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1.2   Motivation 

Additive manufacturing allows the creation of a wide range of structure that 

cannot be produced with traditional manufacturing techniques.  One example is 

customized meso-scale cellular structure.  The size, complexity, and non-uniformity 

possible with this type of structure make producing it extremely complicated.  Additive 

manufacturing offers a unique solution to the problem of customized structure because it 

does not rely on hard patterns, machinery configurations, casts, etc.  The remaining 

challenge is to design the structure itself.   

Often, a good application of meso-scale cellular structure is as a stiffening agent 

for a surface.  If one were to design cellular structure to stiffen a particular surface, the 

only known information would be the surface itself.  To create cellular structure, a 

volume is needed.  It may be feasible to calculate an acceptable volume for the given 

input surface, though it may be hard to evaluate the quality of the volume.  For some 

input surfaces, it would be very difficult to create a proper volume to fit with cellular 

structure. 

Once the volume is known, it must be divided into cells.  This could not be done 

manually in most situations.  If the cellular material can be fit to tetrahedral-shaped 

elements and if uniform sizing is not crucial and if the orientation of the cellular structure 

is not important, many finite element modeling tools are available that could divide the 

volume effectively.  If cubic elements and uniform element size are desired, it is much 

more difficult to use available finite element modelers to divide the volume.  If the 

surface is very simplified or very regular, commercial finite element modeling software 
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could possibly be used.  The types of surfaces that could be used would be severely 

limited, however. 

Once the surface is divided into cells, or elements, the cellular structure must be 

inserted.  Again, this is not something that could realistically be done manually for most 

cases.  If the orientation of the cellular material is not important and all features of the 

cellular structure are equal in size, it may be feasible to partially automate the process of 

inserting cellular material into defined cells created by a finite element modeling tool.  If 

a specific orientation is desired, the finite element output may have to be sorted before 

cellular structure could be inserted, which may take considerable time and produces 

additional book-keeping requirements.  Cellular structure created this way also limits 

opportunities for customization because the input is not standardized or inherently 

organized. 

So, for some types of surfaces, volumes that can be filled with cellular structure 

are relatively easy to calculate.  For some of those volumes, it may be possible to get a set 

of cells/elements that can be fit with cellular structure.  For some of those sets of cells, a 

cellular structure definition can effectively be inserted.  Between each of those steps, 

information may have to be transferred from one software package to another, which is 

time consuming and may lead to errors.  There are no software packages for inserting 

cellular structure into finite element mesh, so this would have to be done in some other 

manner and would likely have to be highly tailored to the mesh for specialized orientation 

arrangements.  All in all, the current process to produce cellular structure for a given 

surface is extremely limited, complicated, and time consuming.  There is a large window 

of opportunity for improvement. 
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1.3   Goals 

The general goal of this thesis is to develop a tool to automate the design process 

for meso-scale cellular structure for an input surface.  Currently, design of cellular 

structure is very limiting and time consuming.  It requires a number of different tools and 

specialized skills.  A tool that combines the necessary processes, is efficient, and expands 

the range of surfaces that can be fit is needed to make it feasible to implement cellular 

structure more often. 

There are three specific goals for this tool.  The first goal is to parameterize the 

input surface into square elements of a given size.  Square elements are chosen because 

they are more difficult to calculate using commercial finite element modeling tools, and 

they can be broken into tetrahedral elements or other shapes if desired.  Many cellular 

material configurations are designed to fit cubic elements, as well, because of the 

symmetry.  A uniform element size is desired in order to create cellular materials with 

good stiffness, strength, and weight properties.  Elements that are smaller than requested 

will produce cellular structure that is more dense, which negates the benefits of cellular 

structure.  Elements that are larger than requested will produce cellular structure that is 

less dense, but that may not be strong or stiff enough for the intended application.  The 

square elements on the input surface form the bases of the cubic elements to be filled 

with cellular structure. 

The second goal is to create the volume to fill with cellular structure.  This is 

achieved by offsetting the original surface a given distance.  The mesh on the input 

surface is projected onto the offset surface to form the opposite face of the cubic element 

to be filled with cellular structure. 
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The final goal is to insert cellular material into the cubic cells formed between the 

mesh on the original surface and the offset surface.  Because the cubic elements should 

be defined in a very organized way, all that should be needed is a pattern for the cellular 

structure that can be duplicated for each existing cube.  

Figure 1.2 shows the planned progression from input surface to surface mesh to 

offset mesh to full cellular structure.   

 

 

 

 
Figure 1.2:  Cellular structure process 
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1.4   Organization of Thesis 

 
 
 

 
Figure 1.3:  Thesis organization 

 
 

The second chapter in this thesis is a literature review.  A number of areas that 

relate to the processes needed to design cellular structure are investigated.  These areas 

include two-dimensional and three dimensional finite element meshing techniques and 

surface offsetting methods.  Many of these areas are well developed but do not fit well 

with the needs of this research, and current work that combines these areas of research is 

limited.  A review of current cellular materials and cellular material design is also 

included in the second chapter. 

The third chapter is a detailed presentation of the algorithm that has been 

developed to automate the creation of cellular structure.  The description is followed by a 

detailed example that highlights individual processes in the algorithm. 

The fourth chapter presents several example problems.  Examples are chosen to 

illustrate the algorithm’s performance with different input geometry.  Performance is 

evaluated in two major categories:  Speed and accuracy.  Accuracy is evaluated based on 

standard finite element categories, such as skew, aspect ratio, and size.  Speed is also an 

important criterion.  The speed performance is related specifically to the offsetting 

-Description of       
tool/algorithm 

-Detailed example 

 Literature review 
Multiple examples to 
demonstrate 
tool/algorithm function 

-Conclusions 

-Future work 

   ……Chapter 2 ……….….….…….Chapter3 …….………………….Chapter 4 ……..…..…….……….Chapter 5…… 
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procedure.  Two methods for offsetting are investigated and compared with accuracy and 

speed as the primary criteria. 

The final chapter is a conclusion to the work and a look at limitations and future 

possibilities.   
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2 Literature Review and Research Gap 

The following is a review of topics related to the research reported in this thesis.  

After completing the review, the research gap is identified.  

2.1 Literature Review 

The following research areas were reviewed in conjunction with the development 

of the research presented in this thesis.  Two methods were initially explored to create 

cubic primitives in which to insert cellular structure:  1) Generate two-dimensional finite 

element mesh on a surface and project it onto an offset surface, 2) generate a volume 

between the input surface and a calculated offset surface and generate three-dimensional 

finite element mesh for the volume.  Therefore, finite element meshing techniques for 

two-dimensional and three-dimensional elements and methods for offsetting are studied.  

A method utilizing two-dimensional mesh was ultimately chosen.  To create the two-

dimensional mesh with the method presented in this thesis, the input surface is flattened, 

so flattening methods are also examined. 

2.1.1 Flattening 

A significant amount of research has been conducted on the flattening of three-

dimensional surfaces onto two-dimensional planes.  Applications are often in the areas of 

textile production, such as pattern making for shoes and clothing.   
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Most research in this area focuses on minimizing an energy function.  Many start 

with a triangulated surface, then systematically project the individual triangular elements 

onto a plane, while maintaining dimensions as close to the original dimensions as 

possible.  McCartney, et al [1] use a very simple, geometric technique to flatten the 

surface, and any change from the original dimensions results in a stored energy, assuming 

every triangle edge is, in effect, a spring. Tam, et al [2] use strain energy calculated for 

each triangular surface to measure distortion.  In both cases, an iterative process is used 

to reposition triangle vertices to minimize the stored energy. 

Zhong, et al [3] use a more complicated method, which applies a force to unfold 

pairs of triangles.  A driving force is also applied which results in a velocity toward a 

plane.  The triangles then collide with the plane to form a flattened surface.  This method 

requires both a velocity redistribution and strain minimization. 

In [1] and [3] and in many other instances, darts or breaks in the surface are 

allowed when strain in an area is particularly high.  This is particularly important when 

making patterns for clothing because distortion would yield highly unfavorable results.  

Therefore, it is important to these flattening applications. 

In the research presented in this paper, the need for strain reduction is eliminated 

by breaking the input surface into smaller areas which minimize curvature.  There is also 

no need for darts because of minimized curvature and because the resulting flattened 

surface is used for reference.  Therefore, the distortion will not lead to a similar 

undesirable result in a produced part. 
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2.1.2 Automated Mesh Creation 

Automated mesh creation is studied for methods of meshing surfaces with shell 

elements and volumes with solid elements.  Both methods are relevant to cellular 

structure design. 

2.1.2.1 Quadrilaterals  

The primary application for research into automated quadrilateral mesh of a 

surface is finite element analysis.  Triangular mesh can be created and optimized using a 

number of methods, but quadrilateral mesh produces less error in the results of a finite 

element analysis.  The increased use and complexity of finite element models has lead to 

a large amount of research in the area. 

Meshing techniques fall into two general categories:  Mapped mesh and free 

mesh.  Mapped meshing techniques can produce very good quadrilateral mesh results, but 

they often require extensive user interface and can be limiting in regard to what types of 

surfaces can be meshed.  Mapped mesh can only be applied to three- or four-sided 

parametric surfaces or surface patches.  Arbitrary three-dimensional surfaces, which are 

the focus of the work presented in this thesis, would represent significant challenges for 

most mapped meshing procedures. 

The most basic free meshing techniques involve triangular mesh because any 

surface can be meshed with triangular elements.  Some techniques start with a triangular 

mesh then combine adjacent elements to form quadrilaterals [26].  These methods 

typically produce highly skewed elements and have regions where size varies widely.  
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Because a Voronoi tessellation is the dual of a Delauney triangulation, Voronoi 

tessellations are also often used for the basis of creating mesh due to the ability to mesh 

arbitrary surfaces.  Methods incorporating Voronoi tessellations typically focus on 

triangular mesh, but methods have also been developed to create quadrilateral mesh this 

way [27].  As seen in Figure 2.1a, the Voronoi tessellation divides a surface into a 

number of polygons, which are then individually meshed.  It can be seen in Figure 2.1b 

that the mesh is not square and that the size of elements in each polygon of the 

tessellation is not regular. 

 

 

Figure 2.1:  Automated quadrilateral mesh using a Voronoi tesselation 
 

 

Joe [4] and Park, et al [5] have each developed other effective methods for filling 

a polygon with quadrilateral mesh.  In [4] a desired number of quadrilateral elements is 

specified as a means to guide size.  This method first fills a region with polygons, and 

then breaks the polygons into quadrilateral elements based on a geometric algorithm.  

The large number of added polygonal boundaries within the input surface complicates the 

(a) (b) 
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interfaces and leads to many elements of irregular shape and different element sizes.  

Figure 2.2 shows the result of a test case. 

 
 

 
Figure 2.2:  Automated quadrilateral mesh in polygons 

 
 

In [5], a looping scheme is used for different areas of the polygon that is being 

meshed.  The different areas are then meshed from the boundaries of the loop inward.  

This method is concerned less with size regularity than with element quality.  Figure 2.3 

show an example result. 

 

 
Figure 2.3:  Automated quadrilateral mesh in loops 
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Both methods produce good results for finite element analysis.  However, because 

both are focused on producing quadrilateral-only mesh, some elements are significantly 

smaller than others, and many, if not most, angles are not approximately square.  These 

results share the same characteristics of all automated mesh generators and are not ideal 

for the preliminary steps of laying out cubic truss primitives.  The desired base for three-

dimensional truss primitives is a square grid.   

2.1.2.2 Hexahedral Mesh 

As with the quadrilateral methods above, hexahedral mesh generation for a 

volume is primarily used for finite element methods where the key goal is to produce 

higher-order elements for analytical accuracy.  Many methods have been developed for 

this purpose [6, 7].  Solid meshing an arbitrary surface is often difficult or impossible 

with some methods, and when mesh can be produced, elements are often different sizes 

and stray from cubic form, especially in transitional regions. 

A simple method for creating hexahedral mesh is sweeping.  Swept mesh is 

produced by generating mesh on a planar cross-section surface which is then translated 

along a guiding curve.  Nodes are produced at regular intervals along the translation.  

Results are usually very good, but the types of volumes that can be produced with this 

method are very limited.  Only volumes that can be extruded along a smooth curve and 

that have a uniform cross-section are viable.  Lai, et al [8] have developed a method to 

separate volumes into multiple, smaller volumes that can be swept.  There are still many 

limits to the types of surfaces that can be meshed this way.  Many arbitrary surfaces 
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would not be accommodated.  Sweeping methods also require the input of guiding 

curves, which would not necessarily be straightforward to calculate or integrate into an 

automated process.  Another complication is that for the original surface to be swept it 

must be meshed with only quadrilateral elements.  

There are a number of other hexahedral mesh generation techniques, including 

mapping, plastering, whisker-weaving, tetrahedral-based, and grid-based methods.   

Mapping methods can produce high quality results, but often require significant 

user input.  Mapping methods also require that the meshed surface be broken down into a 

group of regular regions.  With an arbitrary surface, this can lead to small areas filled 

with poor mesh and often elements that are much smaller than desired.  It may also be 

impossible to map mesh some arbitrary surfaces. 

Whisker-weaving [9] and plastering [10] are both “advancing front” methods.  

They begin with mesh on the surface of a solid and work in toward the center.  Plastering 

often encounters voids in the center of a solid that either produce bad element quality or 

cannot be meshed with hexahedral elements at all.  Whisker-weaving avoids this by 

creating internal loops that dictate the meshing within the solid.  Kawamura, et al [9] 

have developed a method to improve the loops and eliminate self intersections and other 

problems that create bad elements.  The improvements often lead to a refinement of the 

mesh in some areas, and the resulting meshes can still suffer from irregularities at the 

center of the solid.  This method is not practical for creating uniform layers of cubic 

elements.     

Tetrahedral-based methods produce all tetrahedral mesh first and then break each 

tetrahedral into four hexahedral elements.  The advantage of this method is that creating a 
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tetrahedral mesh is generally easier than producing a hexahedral mesh.  The result, 

however, is generally poor quality mesh.  Elements are not approximately square, and 

orientation is not regulated.  Owen [11] developed a method to improve the quality of the 

hexahedral elements produced from tetrahedral elements.  While more elements are a 

good quality, problems with orientation and shape are still present.  This type of method 

also eliminates the possibility of creating uniform layers of elements/truss. 

Grid-based methods begin by superimposing a grid of cubic elements with nodes 

over a volume.  Then nodes and elements outside the volume are eliminated, and inside 

nodes are projected onto the surface.  Zhang, et al [12] have developed a grid-based 

method to mesh a solid.  Their method makes advancements in dealing with surface 

boundaries and surface mesh to improve element quality.  Figure 2.4 shows a result from 

their research.  Mesh is generally good for FEA applications.  However, in the corner the 

transition mesh is much finer than the rest of the body.  Elements are also distorted from 

cubic.  Lee and Yang [13] have developed a method that uses a custom grid instead of a 

cubic grid to improve shape results.  The mesh shape improvements refer to analytical 

results, however. 
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Figure 2.4:  Automated hexahedral mesh 

 
 
 

Transitional mesh areas are present in many methods of automated hexahedral 

mesh generation for finite element analysis, which is not acceptable when the desired 

outcome is a uniform layer of cubic elements. 

The automated mesh generation techniques presented above all suffer from one or 

more of the following problems:  Local mesh refinement, unregulated orientation, 

skewed element shapes, impractical user interface, or inability to deal with arbitrary 

surfaces/volumes. 

2.1.3 Offsetting 

Calculating the offset of a surface is useful for many applications.  For this 

application, a uniform layer of cellular structure is desired, which makes offsetting 

necessary.  Figure 2.5 shows an example of inside and outside offset surface in two 

dimensions.  The offset surface in two or three dimensions is at least a given distance 

from all points on the original surface. 
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Figure 2.5:  Offset example 

 
 

A point-based method for calculating the offset surface was developed by Chen, 

et al [14].  In this method, the input surface is sampled to created many points that lie on 

the surface for reference.  Then, a set of offset points are established by projecting the 

sampled points normal to the surface.  The offset points are then compared to sample 

points and each other to establish the point cloud that represents the offset surface.  The 

point cloud can then be triangulated to establish a new surface. 

Other methods developed for offsetting involve NURBS surfaces or require 

“water tight” volume inputs.  These methods are impractical for the purpose of this 

research.  A point-based method makes sense for this application because the surface will 

already be sampled for other applications, and a reconstituted surface is not necessary. 

A method similar to [14] was used in this research, along with a simplified 

method based on a similar point-based method.  The method based on [14] produces 

good results but can be time consuming. 

Original curve 

Outside 
offset 
curve

Inside 
offset 
curve 
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2.1.4 Cellular Structure Design  

Some work has already been completed in the area of cellular structure design.  It 

is studied here to understand what is currently available and opportunities for 

improvement 

2.1.4.1 Regular Periodic Cellular Structures 

A number of methods for creating regular periodic cellular materials have been 

developed.  Honeycomb core has long been a popular lightweight cellular material for 

aerospace applications, etc.  Many companies mass produce honeycomb core.  Truss core 

has some structural advantages to the honeycomb configuration, which has led to the 

development of new types of cellular material.  In [15], Queheillalt, et al discuss a 

fabrication method to create periodic aluminum truss structure by combining an extrusion 

with electrodischarge machining.  The result is a uniform layer of regular truss between 

two plates. 

Sypeck, et al [16] have also designed a method to create periodic metallic truss 

between to plates.  Their method involves deforming hexagonally perforated metal sheets 

to create the truss elements.  The truss is then bonded to face sheets using a transient 

liquid phase approach.  The result is tetrahedral truss core between two face sheets. 

Approaches using rapid manufacturing of periodic truss elements have also been 

developed [17-19].  These methods generally focus on stereolithography as the rapid 

manufacture type, but some are applicable to many kinds of rapid manufacturing 
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techniques.   The results are a variety of truss types.  This shows that many configurations 

are possible and that there is room to expand similar technologies to conformal truss. 

2.1.4.2 Conformal Cellular Structures 

Some past work has been completed in the area of conformal truss design.  Wang 

and Rosen [20] have developed a parametric modeling method to produce custom truss 

structures.  This method uses Bezier surfaces to decompose input geometry into truss 

elements.  The result is conformal truss for a given surface or volume.  This method often 

requires surfaces to be broken down into multiple Bezier approximations and related back 

to each other through continuity requirements.  Because the surface is only approximated 

by the Bezier curves, some truss vertices may not lie on the original surface.  Also, for 

three-dimensional truss, the bounding surfaces must be known.  If a uniform layer of 

truss is desired for a surface, another means of calculating the volume must be used first.  

2.2 Research Gap 

Currently, there are many methods for meshing a surface.  Any commercial finite 

element modeling package can create almost exclusively quadrilateral mesh on a given 

surface.  The mesh produced may be sufficient, but it would not be optimal for cellular 

design because size and shape regularity are sacrificed.  

 If a designer using a typical CAD package could calculate the offset surface for 

his original surface and create a solid, a finite element package could possibly be used to 

create a hexahedral mesh, which could then be fit with cellular material.  With current 
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methods, it would be extremely difficult to interface a calculated offset surface with an 

existing surface, and it would require considerable user interface.  It is also difficult to 

create hexahedral mesh for many solids to get a single, or multiple, uniform layers of 

hexahedral elements with nodes on the offset surface directly across from nodes on the 

original surface.  Many finite element tools allow mesh to be altered, which would allow 

the user to create appropriate mesh, but this would require a large effort on the part of the 

designer.  Therefore, solid meshing with traditional techniques does not work well for the 

application of cellular structure design.  

 Currently there are no applications that meet the specific needs of cellular 

structure design.  

2.3 Summary 

Chapter 2 presents a literature review of fields related to the design of cellular 

structure.  The method for designing cellular structure developed in this thesis creates 

finite element mesh to fill with cellular primitives.  Therefore, many two- and three-

dimensional finite element meshing techniques are explored.  All of the methods 

investigated are designed specifically to create elements with good qualities for analytical 

solutions.  This is often not ideal for cellular material design.  Many of the techniques 

studied are also only applicable to limited types on input surfaces.  Offsetting and 

flattening operations and current methods of designing and manufacturing cellular 

materials are also discussed. 
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The research gap addressed by this thesis is to combine and adapt modeling tools 

that are already developed to focus on the specific task of cellular structure design with 

the hope that it will facilitate the use of cellular structure in a wide range of applications. 
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3 Algorithm Description 

Cellular structures such as honeycomb core, lattices, and foams are useful in 

many applications, especially when minimizing weight is crucial.  They offer a high 

stiffness to weight ratio and often improved thermal and acoustic properties.  Some 

cellular structures are already mass produced, like honeycomb and various lattice 

configurations.  These are regular structures, meaning that the exact same unit cell is 

replicated many times to form a system of structures.  Foams are stochastic rather than 

regular, with a random arrangement of voids that have a general bulk property.   

Regular or random cellular materials have many of the beneficial qualities of 

cellular structures, but they are necessarily limited in performance.  Only a certain variety 

of regular cellular structures are produced, so a designer must pick one that has the best 

shape from the choice available.  This might result in having cellular structure that is 

heavier or more complex than needed for the application. 

There are two primary reasons that a customized cellular structure is desired.  The 

first is that with a customized structure material is placed only where it is needed for a 

specific application.  The second is that a customized cellular structure is conformal with 

the surface or volume that it interfaces with.  Currently, honeycomb core, for example, 

must be cut to size.  Partial cells at the boundaries could have weaknesses or altered 

stiffness properties. 

The purpose of this chapter is to describe the components of an algorithm that 

creates a custom cellular structure layout for a given surface.  The desired output is a 
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structure design that takes advantage of the unique features of cellular materials and 

eliminates the weaknesses of the regular or random materials currently available. 

Figure 3.1 shows a map of the process to create three-dimensional cellular 

structure from an input surface.  Each step in the process will be described in detail 

below.  The input for the algorithm is an STL file, which is a convenient universal file for 

this application.  First, the STL file is read in and sampled to define the input surface.  

Next, the input surface is separated into smaller areas in the partitioning step.  The 

partitions are separately run through the flattening step and grid application (indicated by 

the dashed lines in Figure 3.1).  The grid applied is basically a finite element mesh.  The 

meshes on all partitions are then joined back together in the boundary matching step.  A 

quality check is then performed on the resulting mesh.  At this point, the input surface has 

been covered with a mesh that is mostly quadrilateral elements.  Now a volume must be 

defined to hold a three-dimensional cellular structure.  The input surface is offset, and 

then the mesh on the input surface is translated to the offset surface to form three-

dimensional elements.  These elements are filled with a cellular structure definition and 

can be written out in numerous formats.  
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Figure 3.1:  Algorithm map 
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3.1 STL Processing 

The input for this algorithm is an STL file, which describes surfaces as a 

composition of triangular faces [21].  A sample of the file format and resulting triangular 

face are shown in Figure 3.2.  Each triangular face is defined by its vertices and an 

outward-pointing normal vector.  The order of the vertices relates to the normal by right-

hand rule.  

 
 

 
Figure 3.2:  STL file format 

 

facet normal  3.87559e-002  0.000000e+000  -9.992487e-001 
     outer loop 
           vertex  5.656921e+001  1.270000e+002  3.427155e-001 
           vertex  5.068504e+001  0.000000e+000  0.000000e+000 
           vertex  5.068504e+001  1.270000e+002  0.000000e+000 
     endloop 
endfacet 

vertex1 

vertex3 

vertex2 

(56.57, 127.00, 0.3427) 

(50.69, 0.00, 0.00) 

(50.69, 127.00, 0.00) 

normal:  (0.0388, 0.00, -0.9993) 
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The STL input must be processed into a more usable format, and because each 

triangular face is formed independently, connections must be established between faces 

that share faces and/or vertices. 

When the STL file is read, each triangular element is documented with its 

vertices, lines, and normal.  Each triangle has three lines:  vertex 1 to vertex 2, vertex 2 to 

vertex3, and vertex 3 to vertex1.  The vertices are documented by their x-, y-, and z-

coordinates in a separate array and referenced to their face.  Once all points are read in, 

there will be many duplicate entries because the faces are defined individually, without 

reference to neighboring faces.  Therefore, after all points are established, points sharing 

the same spatial coordinates are consolidated, and the face variable is updated to 

reference the unique set of points. 

The lines are also documented separately by their end points as well as the normal 

of the face they are associated with.  The normals are included for use later in the 

offsetting.  The points defining the lines are from the unique set of points, so that their 

point references match the point references in the definitions of the faces.  Line 

definitions also have duplicates.  They cannot be consolidated, however, because of their 

reference to the face normal.  Therefore, a new variable is established to match lines to 

their duplicates, if two faces share an edge.  This variable documents the pairs of lines, 

whether a line is shared by a pair of faces or not, and if the faces that share an edge form 

a concave or convex angle.  This variable is important for offsetting because it 

determines whether a point on a line should be offset or not, as will be explained further 

when offsetting is discussed in detail.  It is also important for sampling, to avoid creating 

duplicate sampled points. 
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3.2 Sampling 

Sampling the input geometry serves a number of purposes.  The primary purpose 

is for parameterizing the surface, but it is also needed for the offsetting function and 

matching of boundaries, which will be discussed more in following sections.  Sampling 

the surface involves creating new points that lie on the surface.  This refines the surface 

definition by increasing the number of data points recognized by the algorithm. 

All vertices from the original triangular faces of the input STL file are added 

immediately to the set of sampled points as they are defined, with no additional 

processing.  They are added separately, instead of as part of the line or face sampling, to 

avoid duplication or exclusion.  They are included to keep the important definition of the 

faces’ corners as part of the sampled set and for offsetting. 

Lines and faces are sampled using the same universal size increment.  This is a 

user input which can be increased or decreased to control the number of points being 

generated.  A higher number of points will give a better result, but will increase 

processing time. 

3.2.1 Line Sampling 

Line sampling creates new points along the lines that represent each edge of each 

face from the input STL surface to further define them for later steps.  An example of line 

sampling is shown below in Figure 3.3.  The length of each line is divided by the 

universal sampling increment, shown as LS in the figure.  The ratio of line length to the 

sampling ratio is then rounded up to the next whole number using a ceiling function.  The 
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calculation is shown in Figure 3.3a.  If the ceiling function returns a one, it is 

automatically increased to two.  This is to ensure that all lines have at least one sampled 

point other than the endpoints.  A new local sampling increment is then established for 

each line, shown as LSL in Figure 3.3b, which is the original line length divided by the 

number returned by the ceiling function.  A sampled point is then created along the line 

every LSL units, excluding the beginning and end points.  The sampled points are shown 

in Figure 3.3b.  

 
 

 
Figure 3.3:  Line sampling 

3.2.2 Face Sampling 

Faces are sampled in a manner similar to lines.  Figure 3.4 shows an example of 

face sampling.  The first two lines of a face description are used.  Each line is divided by 

the universal sampling increment, and the ceiling function value is taken, just as in line 

sampling.  The maximum of the two ceiling function values is used to create local 

sampling increments for each of the lines.  This is shown in Figure 3.4a.   
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The local sampling increments are used to create temporary sampled points along 

the lines.  Then between corresponding points on opposing lines, a new temporary line is 

established, as shown in Figure 3.4b.  This line is then sampled exactly as other lines.  

Figure 3.4c shows the sampling of one of the temporary lines, LT4.  The ratio of 

the length of LT4 to the universal sampling increment is between five and six.  Therefore, 

it is rounded up to six by the ceiling function, and five evenly spaced sampled points are 

created that reference the face they lie on. 
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Figure 3.4:  Face sampling 
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LT1
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LSL2 

Face sampled points 

ceiling(L1/LS) = 4 
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The set of sampled points now defines the entire area of the surface.  Each 

sampled point references the vertex, line, or face that it lies on.  These points are stored 

for use in future operations. 

3.3 Partitioning 

The partitioning operation divides the input surface into multiple smaller surfaces.  

The partitioning step is necessary for future flattening and meshing steps.   

Because many applications of cellular structure can involve closed or semi-closed 

volumes, such as a hollow sphere or conical surfaces, rather than planes or open faces, it 

is necessary to divide the surface before flattening.  Otherwise, the surface will be 

flattened partially or completely onto itself.  For example, flattening of a spherical 

surface onto a plane is impossible without either a break in the surface or complete 

overlap of opposite hemispheres.  Even volumes that are not completely closed, such as 

open-ended cylinders, cannot be flattened without at least one break or else they will also 

experience overlap. 

Partitioning is also important to the quality of the mesh result.  Even when 

working with surfaces that can be flattened without a break, such as a hollow hemisphere, 

the flattening will cause distortion.  This distortion will then be translated to the mesh 

result.  The purpose of partitioning in this case is to diminish the distortion caused by 

flattening. 

The input for this step is the surface read from the STL file.  Most partitioning 

methods use a triangulated surface [22].  The partitioning routine divides the surface into 

multiple areas using the normal vectors of the triangular faces that make up the input 
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surface.  Curvature is a common way to separate a surface into partitions [23,24].  The 

partitioning method used in this algorithm is very simplified.  An initial face is chosen, 

and then its normal is compared to those of the adjacent faces.  If the angle between face 

normals differs by more than a given amount, they are put into separate partitions.  The 

angle of difference allowed within a partition is a user input.  Less difference can 

decrease the amount of error in the flattened partition, but will increase the number of 

partition interfaces, which may increase the number of irregular elements at interfaces.   

The result of this step is a set of partition definitions that contain groups of 

adjacent faces with similar normal vectors, within a given limit.  The partition definitions 

also include information about the boundaries between partitions. 

3.4 Flattening 

The flattening step takes each partition separately and “unfolds” it onto a plane.  

The purpose of flattening the surface is to facilitate parameterization.  Two-dimensional 

surfaces can easily be divided into a number of regular, in this case square, regions that 

will serve as the base for the hexahedral element definitions.   

The first step of the flattening procedure is to re-orient the triangular faces of the 

partition to generally face the XY-plane (normal to Z-axis) and to include a nominal 

offset in the Z-direction to differentiate re-oriented elements from flattened elements.  

The primary purpose of re-orientation is to avoid confusion between elements that lie in 

the XY-plane in their original definition and those that have been flattened onto that 

plane.  Figure 3.5 shows a re-oriented partition ready for flattening.  The plot on the left 



 34

is the original orientation of the faces in the partition, and the one on the right shows the 

faces reoriented. 

   
 

 
Figure 3.5:  Partition in original orientation (left) and reoriented for flattening (right) 

 
 

Once they are re-oriented, the faces are flattened onto the XY-plane.  The 

flattening technique used here is highly simplified.  There are no energy or strain 

relaxation routines as in other flattening methods [1-3].   

The first side of the first face to get flattened is handled with a unique procedure.  

After that all other sides of all faces are handled the same.  First, the initial face is 

translated down so that at least one vertex is on the XY-plane.  Figure 3.6 shows an 

example of a first face to be flattened.  In Figure 3.6a, vertex 1 of the face lies in the XY-

plane.  The second vertex of the face is then flattened.  The location of the second vertex 

is calculated to maintain the original side length and the original orientation (neglecting 

the Z-component).  The second point is moved to a location along the same XY-vector, 

which is shown in Figure 3.6a as a dashed line, as its original position from vertex 1 at a 

distance equal to the original size of that side of the triangle.  Figure 3.6b shows the 
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original length of the side, L1.  Figure 3.6c shows vertex 1 and vertex 2 flattened onto the 

XY-plane. 
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Figure 3.6:  Flattening the first side on the first face 
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All other vertices, after the first two of each partition, are flattened by measuring 

their distances from the two vertices of the face that have already been flattened.  Figure 

3.7 continues the first face example from Figure 3.6 above.  The only vertex that has not 

been flattened is vertex 3.  Figure 3.7a show the measurements of the sides of the face 

that will be used as radii to calculate a flattened location for vertex 3.  The new location 

of the third vertex is the intersection of circles of those radii from the flattened locations 

of the first and second vertices.  Figure 3.7b shows the intersection point that is the 

calculated location of the third vertex for this triangular face. 
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Figure 3.7:  Flattening the third vertex of a face 
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The rest of the faces are flattened in the same way, working out from the flattened 

points of the first face toward the edges.   

If a face is flattened which already had a vertex flattened along with a different 

face, the location calculated will be averaged with the previous location.  Figure 3.8 

below shows an example where a point has been flattened with two separate faces, shown 

as location 3a and 3b on the left.  The new location of the vertex is calculated as the 

average of the coordinates of locations 3a and 3b in the XY-plane.  This is also shown in 

Figure 3.8 on the left.  Both faces in the figure then reference the new location, as shown 

on the right. 

 
 

 
Figure 3.8:  Averaging two locations for a flattened point 

 
 
 

If no intersection can be found at all for the circles due to distortion from the 

flattening, the radii are incrementally increased as a percentage of radial length until an 

intersection is achieved.  This will result in an extremely thin face, essentially a line.  
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cause of this situation in the flattened plane.  It is not problematic for further steps.  This 

type of face is simply preserved to maintain boundary definitions and continuity.   

Only the input triangular faces and their vertices, not the sampled points, are 

translated into a flattened plane. 

Figure 3.9 shows the partition from Figure 3.5 flattened. 

 
 

 
Figure 3.9:  Flattened partition 

 

3.5 Mesh Generation 

Once a flattened surface is established, it is parameterized using the side length of 

the base of the desired cubic primitive as the parameter.  A grid is used to parameterize 

the surface, which breaks it down into mostly quadrilateral, approximately square 

regions.  These regions form the bases of the cubic primitives that will later be filled with 

cellular structure.   

Figure 3.10a shows a flattened partition with a grid superimposed.  The figure 

only shows the vertices of the grid, which are represented by small red circles.  Each grid 

vertex that falls within the boundaries of the flattened surface, shown in the figure within 
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flattened triangle to its corresponding position in the same triangle when un-flattened.  

Grid vertex locations are related back to the un-flattened triangles because they are to be 

matched to sampled points, which have not been translated to the flattened faces.  This is 

described in detail in Section 3.5.1 below. 

The grid is made to be slightly larger than the flattened partition to ensure that all 

boundaries are accounted for, as shown in Figure 3.10.  Vertex locations that are just 

outside the boundary will be matched to sampled points on the boundary.  The boundary 

points are identified by going across grid rows of constant y-value and down columns of 

constant x-value.  The first grid location that is not within the boundary in either direction 

is counted as a boundary point.  Figure 3.10b shows the points that are considered for the 

boundary, as indicated by the arrows in the figure.  They are immediately adjacent to a 

point within the boundary of the surface when moving across or up and down lines of 

grid vertices. 

 
 

 
Figure 3.10:  Grid superimposed on a flattened partition 

 
 
 

(a) (b) 
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Establishing boundary points that are distinct from points in the middle of the 

structure is important for reassembling the separate partitions after meshing.   

All grid vertices that are determined to be either within the boundary of the 

flattened surface or boundary points are matched to sampled points and stored in separate 

matrices, one for inside points and one for boundary points.  

3.5.1 Inside Points 

The first step in matching the grid vertices inside the surface to a sampled point is 

to find which flattened triangular face it falls within.  This is done with a series of cross 

products.  See Figure 3.11.  In the figure, the grid vertex of interest is labeled GP.  The 

vectors from P1 to P2 (V1) and from P1 to P3 (V2) are crossed.  The direction of this 

cross product is compared to the direction of the cross product of vectors V1 and V3.  

The same procedure is repeated for all three vertices.  If the directions are the same in all 

three cases, then the grid point is in the triangle.   
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Figure 3.11:  Using cross products to determine if a point is within a triangle 

 
 
 

Once the grid point is matched to a triangle, the relative position of that grid point 

within the triangle is captured by three ratios.  These ratios are taken from most acute 

angle to avoid problems with negative dot products, etc.  Figure 3.12 shows the ratios and 

how they are calculated.  The line from PT1 to PT2 is perpendicular to the line from P1 

to GP.   
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Figure 3.12:  Locating a point within a flattened triangular face 

 
 
 

The same triangle in its un-flattened configuration is covered in sample points, as 

shown in Figure 3.13 below.  Using the ratios calculated as shown in Figure 3.12, an 

equivalent point to the grid vertex is found on the un-flattened triangle , labeled as ‘C’ in 

Figure 3.13, and matched to the nearest sample point.   
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Figure 3.13: Matching a point to an existing sampled point 

 
 
 

After an inside point has been matched to a sampled point, it is stored in the 

inside point matrix.  The inside and boundary point matrices both have cells for each 

vertex of the overlaid grid.  Many of the locations will not be matched to a sample point, 

and are filled with a value of zero for a place-holder.  A cell in the matrix that represent a 

grid vertex that has been matched to sampled point get filled with the number of the 

sampled point to which it was matched.  The matrix keeps the matched points in order 

spatially and allows boundary points to be identified. 

Figure 3.14 shows an example of the inside point matrix.  The highlighted point in 

Figure 3.14a labeled ‘A’ is matched to sample point number 45.  In the figure, it can be 

seen that there are seven grid vertices across and nine down.  Therefore, in the matrix 

shown in Figure 3.14b there are seven columns and nine rows.  Point A is the fourth grid 

|V1| = |P2 - P1| 
|V2| = |P3 - P1| 
|V3| = |B - A| 

Matched sampled 
point 
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from the left in the fourth row down, so the matched sampled point, number 45, is placed 

in row four, column 4 in the point matrix.  This is done for all inside points. 

 
 

 
Figure 3.14:  Inside Point matrix example 

 

3.5.2 Boundary Points 

Since boundary points are not within any triangle that is part of the surface, they 

must be related to the edge of the flattened partition.  The intersection of the side of the 

triangle that forms the partition boundary and the line between a boundary point and its 

closest inside point is found.  Then a ratio is again used to document the location.  This is 

shown in Figure 3.15a.  The ratio is then used to find the equivalent point for the un-

flattened configuration.  Figure 3.15b shows the same triangle un-flattened with its 

related sampled points.  The point labeled ‘A’ is found using the ratio from Figure 3.15a 

and is matched to the nearest sampled point.  Just as shown above, the matched sampled 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 45 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Inside Point Matrix 

a) b) 
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points are stored in a matrix.  The inside and boundary point matrices are kept separate 

because it is important to know which points are on the boundary for matching later. 

 
 
 

 
Figure 3.15:  Matching a boundary point to an existing sampled point 

 

3.5.3 Corners 

From Figure 3.10a and b above, it is clear that the corners of the partition are 

excluded.  The corner points for each partition are already known.  They are identified in 

the partitioning step because they are defined as the start and end points of a partition 

boundary line.  After the inside and boundary points have been matched to sampled 

points, the corner points are added.  The corner point is compared to all grid locations to 

determine which is closest.  The corner point is then associated to that position in the 

grid.  If the position is already matched to a sampled point, the corner point takes 

Boundary point 

Nearest 
inside point 

Side that forms 
partition boundary 

Intersection point 
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precedence and replaces the existing matched point.  Corner points are part of the 

boundary point set.  Figure 3.16 shows an example where the corner point matches to a 

grid location that was not matched to an inside or boundary point, following the example 

from Figure 3.10 above. 

 
 

 
Figure 3.16:  Adding corner points 

 
 

After the corner points have been added, an initial quality check is run on the grid.  

This quality check is designed to eliminate very thin elements which can cause errors in 

future steps.  The quality check simply measures the distances between points and merges 

any that would result in an element with a side length less than one quarter of the desired 

grid size.  Corner points are preserved over other boundary points, and boundary points 

are preserved over inside points.  If an inside point is merged with a boundary point, the 

value at the location in the inside point matrix is put to zero, and the corresponding 

location in the boundary point matrix takes the number of the matched point on the 

boundary. 
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Before matching boundaries, the grids are written to an “element” format, which 

means that a group of points is specified as a four-point quadrilateral or three-point 

triangular face.  By defining elements this way, changes in geometry can more easily be 

propagated, and continuity is defined for boundary matching and quality checks later.  

The individual partitions are then reconstructed in the boundary matching step to form a 

continuous mesh for the entire surface. 

3.6 Boundary Matching 

The mesh patterns on adjacent boundaries will likely not match perfectly due to 

different orientations, distortion from flattening, etc.  Therefore, meshes on the partitions 

must be connected together by matching up points on the partitions’ shared boundaries. 

Boundaries that have the same number of points from each partition, as in Figure 

3.17a, are matched directly by combining corresponding points.  The coordinates of 

corresponding points are averaged, and the averaged location is matched to a new 

sampled point on the boundary.  The resulting boundary is shown in Figure 3.17b.  The 

procedure is the same for all boundary points except for the first and last points.  The first 

and last points on a boundary are “corner” points.  They will either be at the intersection 

of multiple partitions or will define the boundary of the original surface, so they are 

important to preserve. 
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Figure 3.17:  Matching boundaries with equal numbers of elements 

 
 
 

If boundaries have unequal numbers of points from each partition, as in Figure 

3.18a, some points will have to be combined so that the boundaries can be completely 

connected.  This will result in triangular elements being formed at some locations at the 

boundary.  The example in Figure 3.18b shows the triangles that have been created in 

order to match the boundaries.  The points that are combined together, which form the 

triangular elements, are selected in order from the beginning of the boundary.  So, if 

Boundary 2 has six points and Boundary 1 has seven points, the first and second points 

from Boundary 1 will be combined with the first point of Boundary 2.  If Boundary 2 has 

six points and Boundary 1 has eight points, as in the example in Figure 3.18, then the first 

and second points of Boundary 1 will be combined with the first point of Boundary 2, 

and the third and fourth points of Boundary 2 will be combined with the second point in 

Boundary 2.  The remaining points will be matched one-to-one.  The points are selected 

Boundary 1 Boundary 2 Number of elements along 
boundary preserved 

a) b) 
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this way to keep triangular elements near boundary corners, leaving large areas in the 

middle with only quadrilateral elements.  For real applications, having triangular 

elements near edges of boundaries makes them more accessible for removal, if desired. 

 
 

 
Figure 3.18:  Matching boundaries with unequal numbers of elements 

 
 
 

After the boundaries have been matched, a quality check is performed to improve 

element quality.  This quality check provides fixes for triangular and quadrilateral 

elements with three vertices that are nearly co-linear and for triangular and quadrilateral 

elements with side lengths less than a quarter of the desired length.  For both quadrilateral 

and triangular elements, vertices are considered nearly co-linear if they lie on edges that 

are 135 degrees or more apart.  An angle of 135 degrees is used because it is a general 

rule of thumb for finite element quality, being halfway between the ideal of 90 degrees 

Boundary 1 Boundary 2 
Triangles formed 
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(for a quadrilateral) and the unacceptable value of 180 degrees.  Figure 3.19 shows the 

mesh operations.   

Figure 3.19a shows an example of a triangular element with nearly co-linear 

vertices.  The fix for this type of element is to break the adjacent element in two, as 

shown in Figure 3.19b, and to eliminate the original bad element.  The resulting mesh is 

shown in Figure 3.19c. 

Figure 3.19d shows an example of elements that have an edge length less than one 

quarter of the desired edge length.  This is not a standard finite element quality criterion.  

It was determined for the application of cellular materials that elements with short edges 

should be eliminated.  As shown in Figure 3.19e, a triangular element with a short edge 

will be eliminated, and a quadrilateral with a short edge will be converted to a triangular 

element.  The corrected mesh is shown in Figure 3.19f. 

Quadrilaterals with three of its four vertices nearly co-linear are also corrected as 

shown in Figure 3.19g.  The bad element and adjacent element are both broken.  The 

lines of the break and the resulting corrected mesh are shown in Figure 3.19h and Figure 

3.19i, respectively.  This fix results in the creation of two new triangular elements. 

Once a continuous grid is calculated for the input surface, a corresponding offset 

mesh is needed to create three-dimensional elements.  
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Figure 3.19:  Element quality checks 
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3.7 Offsetting 

The offsetting function creates a new surface that is a minimum uniform distance 

from the original surface at all points.  Figure 3.20 shows an example of a two 

dimensional case of offsetting.   

 
 

 
Figure 3.20:  Inside and outside offset of a square 

 
 
 

Because the input for the algorithm is a surface, an additional surface is required 

to specify the volume that will eventually be filled with cellular material.  A continuous 

three-dimensional layout of cellular structure cannot be defined without the specifications 

of the boundary volume.  Two different methods are explored for offsetting the surface. 

The first method is similar to the method presented in [14].  A cloud of points is 

created by displacing each sampled point the desired amount in a direction normal to the 

surface at that point.  After all points are offset, some are eliminated because they are not 

the full offset distance away from all points.  The offsetting procedure is efficient, but the 
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process of eliminating erroneous offset points is very time consuming, even using the 

technique developed in [14].   

For this method, the sampled points on a face are offset in the direction of the 

face’s normal vector, as shown in Figure 3.21.  These points are not necessarily on the 

offset surface.  That is determined independently of the point offsetting.  The sampled 

points on a convex line are offset in a cylindrical array.  Sampled points on concave lines 

are not offset at all.  Concave and convex lines are shown in Figure 3.22, with α less than 

180 degrees.  The offset points for a convex line are shown in Figure 3.23 below.  The 

vertices are offset in a hemispherical array for a convex point, as shown in Figure 3.24.  

The idea of a convex point is a direct translation from the definition of a convex line.   

 
 

 
Figure 3.21:  Offsetting face sampled points 
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Figure 3.22: Concave and convex lines 
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Figure 3.23:  Offsetting line sampled points 
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Figure 3.24:  Offsetting vertex sampled points 
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A second method of offsetting the surface was developed to improve efficiency.  

This process offsets only the vertices of the mesh elements on the input surface.  Each 

vertex is given an initial offset from the input surface at that point.  If the vertex is a 

sampled point from a face, it is offset in the direction normal to the face.  If the vertex is a 

sampled point from a line, it is offset in the direction that is the average of the two faces 

that intersect at that point.  If the vertex is a sampled point from a vertex of the original 

input surface, then it is offset in a direction that is the average of all faces that intersect at 

that vertex.  The initial offset position is then checked against all sampled points.  If it is 

the full offset distance away from all sampled points, the process is complete.  If the point 

is not at least the full offset distance away from all points, the nearest sampled point is 

found, and a new location for the offset point is calculated to push the point slightly away 

from that sampled point.  The process is repeated to check this new point, and the point 

will continue to be moved away from the nearest sampled point until it is at least the full 

offset distance away from all sampled points.  Figure 3.25 illustrates an example of this 

more efficient method of offsetting with a sampled point from a line between two faces. 
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Figure 3.25:  More efficient offsetting 

 
 
 

Figure 3.25s shows the original input surface with sampled points and the 

theoretical offset surface (red).  Point A is the offset point from the corner, but it is not on 

the offset surface.  Figure 3.25b shows that point B is the closest sampled point.  Point C 

is the location that is the offset distance from Point B normal to the original surface at B.  

Figure 3.25c shows the region magnified for parts d through f of the figure.  Figure 3.25d 

shows a temporary point that is created that is moved away from the closest sampled 

point in an attempt to get closer to the offset surface.  Figure 3.25e shows the multiple 

temporary points created working toward the offset surface.  This method returns a result 

much faster than the first method.   

The benefit of the first method is that there are more points of reference for 

determining which points are truly on the offset surface, producing a more precise result.  

Moving the calculated offset point as in the second method can lead to a slight error in 

the final position.  However, the first method adds another degree of pixelation in the 
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final grid because each element vertex is matched to an offset point that may not be the 

result of offsetting the vertex’s sampled point location.  For the second method, each 

vertex location has an offset node specifically calculated for it, which generally leads to a 

better result.   

3.8 Hexahedral Element Formation 

Once the offset is complete, a three-dimensional volume is defined to hold the 

cellular structure.   The volume must now be divided into small primitive volumes to hold 

individual cellular structure units.   

The quadrilateral elements applied to the original surface form the bases of cubic 

primitives.  A matching mesh must be produced on the offset surface to create the 

opposing face of the primitive.  The definitions of the two opposing faces of a cube 

contain all eight corners needed to define the volume.  Figure 3.26 shows a quadrilateral 

on the input surface projected onto the offset surface forming two opposing faces of a 

cube. 

 
Figure 3.26:  Quadrilateral element projected onto the offset surface 
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If the first method of offsetting is used, a large point cloud that defines the offset 

surface is created.  To define the primitive’s opposing face on the offset surface, each 

vertex of the primitive’s base on the input surface must be matched to the nearest point in 

the offset point cloud.  This procedure is another time-consuming element to the first 

offsetting method because each vertex has to be compared to each point in the offset 

point cloud to find the closest.  Figure 3.27 shows a quadrilateral with a matching face on 

the offset surface created by the first method of offsetting. 
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Figure 3.27:  Matching a quadrilateral base to an offset point cloud  
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If the second method of offsetting is used, the mesh vertices do not have to be 

matched to offset points by searching through a set of points.  Each offset point has been 

specifically created for a vertex of the mesh on the input surface and therefore is 

automatically matched. 

When this step is completed, the vertices of the mesh on the input surface have 

been matched to points on the offset surface.  The eight points for a cubic primitive or six 

points for a primitive formed by a triangular element (triangular prism) are all that is 

needed to describe the volume that is to be filled with cellular material. 

3.9 Truss Definition 

The last step is to insert a cellular structure into each three-dimensional element 

defined above.  For the examples that follow, the cellular structure inserted for 

quadrilateral elements will be the truss element shown in Figure 3.28a.  However, any 

element that fits into a cubic primitive can be inserted.  All that is needed is a different 

definition for output file.  A library of such input elements could easily be developed for 

reference. 
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Figure 3.28:  Cellular structure definition 

 
 

Triangular prism elements must have a modified cell definition.  One option for 

triangular prism elements that would accompany the cubic element for the following 

examples is shown in Figure 3.28b.  The examples below use the elements in Figure 3.28. 

Figure 3.29 shows an example of a primitive element and how the vertices 

coordinate to the truss unit cell shown in Figure 3.28. 

 
 

 
Figure 3.29:  Truss structure formulation 
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3.10  Detailed Example 

This detailed example is presented to show some of the individual steps of the 

algorithm described above in more detail.  The performance of the algorithm will be 

addressed in the following chapters.   

The surface geometry chosen for this example is a half cylinder.  The input 

geometry is shown in Figure 3.30.   

 
 
 

 
Figure 3.30:  Detailed example - cylindrical input surface 

 
 
 

The first step in the algorithm is to sample the input surface.  The sampling 

density is a user input.  The higher the input value, the greater the sampling density or the 

smaller the sampling distance.  Figure 3.31 (note axis scale) shows one triangular face 

from the input surface with its sampled points for two different values of sampling 

density.  Figure 3.31a shows the triangular face with a sampling rate of 20.  Figure 3.31b 
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shows the same face with a sampling rate of 60.  There are nearly three times as many 

sampled points on the surface in Figure 3.31b, which is expected because the sampling 

rate is three times higher. 

 

 
Figure 3.31:  Detailed example - sampling example 

 
 
 

The next step in the algorithm is to partition the input surface.  The surface is 

partitioned based on an angle input that represents the angle between normal vectors of 

faces being compared.  Figure 3.32 shows one way that the algorithm would calculate 

three partitions for this surface with an angle input of 0.87 radian.  There is a range of 

values for the angle criterion that would produce three partitions.  They would not all 

look exactly the same.  For the rest of the example problem, the three partitions shown 

will be used. 
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Figure 3.32:  Detailed example - cylindrical input surface in three partitions 

 
 
 

The next step is to flatten each partition separately.  The partitions are reoriented 

before flattening.  Figure 3.33, Figure 3.34, and Figure 3.35 show the partitions.  The 

reoriented partition is shown on the right, and the flattened partition is shown on the left 

in each of the three figures. 

 

0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

0.2

0.4

0.6

0.8

1

X

Y

Z



 69

 
Figure 3.33:  Detailed example - first partition 
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Figure 3.34:  Detailed example - second partition 
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Figure 3.35:  Detailed example - third partition 
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Once a partition is flattened, a grid is overlaid to calculate mesh.  The flattened 

partition shown in Figure 3.35a is shown with a grid overlaid in Figure 3.36.   The grid 

vertices within the partition boundaries are matched to sampled points and stored in the 

Inside Point Matrix, with each location in the matrix corresponding to a vertex of the 

grid.  The Inside Point Matrix is shown in Figure 3.37.  Some of the matrix locations will 

always be zero because the grid is purposefully made larger than the partition.  The 

vertices of the grid that are matched to boundary points are determined by finding open 

positions in the Inside Point Matrix adjacent to filled positions.  These vertices are 

matched to points on the partition boundary, and corner points are also added.  These 

points are stored in the Boundary Point Matrix shown in Figure 3.38.  In this example 

problem, some inside vertices are very close to the partition boundary and may be 

matched to a sampled point on the boundary.  This can cause the same sampled point to 

be matched to two different locations in the point matrices.  The way this is handled 

when forming elements is shown below. 
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Figure 3.36:  Detailed example - partition three flattened with grid overlaid 

 
 
 

 
Figure 3.37:  Detailed example - Inside Point Matrix 
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Figure 3.38:  Detailed example - Boundary Point Matrix 

 
 
 

The inside and outside point matrices are combined so that elements can be 

written for the partition.  The combined matrix is shown in Figure 3.39.  Starting in the 

upper left corner and working across and down, elements are written by grouping 

together four adjacent matrix locations.  Figure 3.40 below shows three examples of 

elements being formed. 
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Figure 3.39:  Detailed example - combined boundary and inside points 

 
 
 

Figure 3.40a shows an example of four matrix locations that are used to form an 

element.  This particular element is on the partition boundary.  Only three of the four 

locations have matched sampled points.  Therefore, only a triangular element could be 

formed.  However, in this case two of the locations have been matched to the same 

boundary point because of the proximity of the inside point to the boundary.  Because 

only two unique sampled points are present in this group of four, no element is written 

for this case. 

Figure 3.40b shows another example of a group of four matrix locations.  In this 

case, three unique sampled points are identified, which form a triangular element.  This 

element is identified in Figure 3.41 with the letter ‘b’.  Using the same technique of 

grouping four adjacent matrix locations, three quadrilateral elements would be expected 

after the triangular element in this row.  It can be seen in Figure 3.41 that three 

quadrilateral elements are indeed formed in that row. 
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Figure 3.40c shows a final example of element formation.  In this case, there is 

again a duplicated point.  There are only three unique sampled points, so again a 

triangular element is produced.  The resulting element is identified in Figure 3.41 with 

the letter ‘c’. 

 
 

 
Figure 3.40:  Detailed example - element formation examples 
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Figure 3.41:  Detailed example - initial mesh on the third partition 

 
 
 

Mesh is formed the same way on all partitions.  The initial mesh for the three 

partitions before quality checks or boundary matching is shown in Figure 3.42.  The 

boundary between the first and third partitions looks well matched already.  The 

boundary between the first and second partitions is mismatched.  A closer look at the 

boundary between the first and second partitions is shown in Figure 3.43. 
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Figure 3.42:  Detailed example - initial mesh 
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Figure 3.43:  Detailed example - mismatched partition boundary 

 
 
 

At this point, an initial quality check is performed.  This quality check only tests 

element side lengths.  If a side is less than one quarter of the requested element size, then 

it is collapsed.  If this occurs on a quadrilateral element, a triangular element is formed.  

If it occurs on a triangular element, the element is deleted.  Once the quality check is 

complete, the boundaries are matched.  Figure 3.44a and Figure 3.45a below show initial 

mesh before quality checks and boundary matching operations are performed. 

Figure 3.44a shows the mismatched boundary between the first and second 

partitions and some bad elements on the second partition.  The encircled area in Figure 

3.44a on the left highlights two very thin triangular elements.  The encircled area on the 

right shows a quadrilateral with one very short side.  Figure 3.44b shows the matched 

boundary and corrected elements.  The triangular elements have been deleted, and the 

quadrilateral element has been reduced to a triangular element. 
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Figure 3.44:  Detailed example - boundary match and quality check for partition 1/2 
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Figure 3.45a shows the boundary between the first and third partitions and some 

bad elements on the first partition.  The boundary is already matched simply because the 

grids matched to the same sampled points when the initial mesh was calculated.  In 

Figure 3.45a, the upper encircled area shows a triangular element and a quadrilateral 

element that share a short side.  The lower encircled area shows a quadrilateral that has 

one short side.  Figure 3.45b shows the corrected elements.  In the case of a triangular 

element and quadrilateral element sharing a short side, the triangular element is deleted, 

and a new triangular element is formed by the quadrilateral.  The quadrilateral with one 

short side is corrected to form a triangular element. 
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Figure 3.45:  Detailed example - boundary match and quality check for partition 1/3 
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After the boundaries are matched for all partitions, another quality check is 

performed.  This quality check is more thorough.  The operations are shown in Figure 

3.19.  For this example problem, only one element is corrected in the second quality 

check.  Figure 3.46a shows the element to be corrected.  An interior angle is above the 

quality cutoff of 135 degrees.  Therefore, that angle will be divided, and a triangular 

element will be formed as shown in Figure 3.46b.  Once the quality check is completed, 

the surface mesh is finished, and the offset is calculated. 
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Figure 3.46:  Detailed example - secondary quality check 
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The offset mesh is calculated directly from the surface mesh.  Both methods of 

offsetting match the vertices of the surface mesh to offset points to create the offset mesh.  

Therefore, the same pattern of mesh, number of triangular elements, etc. will be the same 

on the surface and offset meshes.  Figure 3.47 shows the surface mesh and offset mesh 

side by side.  The offset mesh is shown on the left, and the original surface mesh is 

shown on the right.  The two meshes plotted together are shown in Figure 3.48.  All that 

is left to do to complete the example is to insert cellular material between the two layers 

of mesh. 

 
 

 
Figure 3.47:  Detailed example - calculated offset mesh 
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Figure 3.48:  Detailed example - surface and offset meshes plotted together 

 
 

For this example, the cellular material primitives used are shown in Figure 3.49.  

For every quadrilateral element, a primitive shown in Figure 3.49a will be inserted, and 

for every triangular element, a primitive shown in Figure 3.49b will be inserted.  The 

resulting cellular material calculated for the input surface is shown in Figure 3.50.  

Further examples will be covered in the next chapter. 

 
 

 
Figure 3.49:  Detailed example - cellular material primitive 
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Figure 3.50:  Detailed example - cellular material 
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quadrilateral finite elements.  A quality check is performed that finds element side 

lengths less than one quarter of the desired length.  These sides are eliminated, which 
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on the input surface.  Another quality check is performed that again eliminates short side 

lengths and also checks interior angles of quadrilateral elements.  Interior angles above 

135 degrees are corrected.  The offsetting function is then performed.  Two different 

offsetting functions were developed.  One function offsets all sampled points on the 

surface, creating a point cloud.  Each corner of each element on the input surface is then 

matched to the nearest point in the offset point cloud.  The other offsetting function 

individually offsets only the corner points of the elements.  The second method is much 

faster.  Both offsetting methods result in an offset mesh that matches the surface mesh.  

The volume between the two meshes is then filled with cellular material primitives, 

forming a continuous cellular material design covering the input surface. 

A detailed example problem is stepped through to highlight each of the steps of 

the method.  The example also demonstrates that the process produces viable cellular 

structure for the input surface geometry chosen.  The specific goals of this research call 

for square mesh on the input surface and a uniform offset.  The example problem in this 

chapter does not necessarily demonstrate that these goals have been met.  The next 

chapter presents several example problems that will demonstrate the quality of the 

method and the degree to which it meets meshing and offsetting goals. 
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4 Examples 

The goal of the algorithm described in the previous chapter is to design cellular 

material for an input surface.  The algorithm calculates a finite element mesh on the input 

surface and calculates an offset surface.  The mesh on the input surface is then used to 

create a matching mesh on the calculated offset surface, but the mesh on the offset 

surface is not directly calculated.  The three dimensional space between the input and 

offset surfaces is then filled with a specified cellular material unit cell. 

The purpose of this chapter is to evaluate the performance of the algorithm.  The 

aspects of the cellular material that are directly calculated by the algorithm, the mesh on 

the input surface and the offset, are investigated using several example problems.  The 

results are compared to desired outcomes using some direct comparison and some general 

finite element quality criteria. 

4.1 Evaluation Criteria 

The desired mesh on the input surface is square:  Four equal sides and four right 

angles.  To measure how closely the mesh produced by the algorithm comes to being 

square, several quantities are studied.  The first quantity is the side length.  Each side 

length is measured and compared to the desired length, which is an input to the 

algorithm.  The other two quantities are standard finite element quality criteria.  They are 

skew and aspect ratio.  Skew relates to the squareness of the element’s angles.  Aspect 

ratio relates to the equality of the side lengths of the element. 
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An arbitrary quality criterion for the minimum allowable side length is checked 

automatically by the algorithm and used to correct bad elements.  The minimum side 

length is one quarter of the desired input length.  Any side length below one quarter of 

desired length should be eliminated by the algorithm in the process of creating the surface 

mesh.  There is no maximum value imposed.  All element lengths should be as close to 

the input desired length as possible. 

Figure 4.1 shows the angle, α, which is used to calculate skew and aspect ratio.  

The value recorded as skew is ninety degrees minus this angle, given in Equation 4-1 [5].  

The minimum skew is zero, which is a perfect square.  A standard measure of a good 

element for finite element analysis is skew less than thirty degrees.  This corresponds to 

accurate analytical results.  It is used here as a general guideline, though the goal is to 

have a skew as close to zero as possible. 

 
 

 
Figure 4.1:  Element quality measurements 

 
 
 



 91

Skew  =  | 90 - α |        (4-1)     
   

 
 

The angle, α, shown in Figure 4.1 is also used in calculating the aspect ratio.  The 

other quantities needed for the aspect ratio calculation are shown in Figure 4.2.  The 

value recorded as aspect ratio is the worst case, i.e. maximum, of the ratios of 

perpendicular components of the h-values shown in Figure 4.2 [25].  Equation 4-2 to 

Equation 4-6 show the calculation of aspect ratio.  The minimum value for aspect ratio is 

one, which corresponds to a perfect square.  A general rule for a good element for finite 

element analysis is aspect ratio less than three.  This rule is for accurate finite element 

analysis results.  It is used here as a general guideline.  The goal is to have an aspect ratio 

as close to one as possible. 

 
 

 
Figure 4.2:  Aspect ratio measurements 
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h3 = h1*sin(α)        (4-2) 
 

h4 = h2*sin(α)        (4-3) 
 

AR1 = h2/h3 if h2>h3   or   AR1 = h3/h2 if h3>h2    (4-4) 
 

AR2 = h1/h4 if h1>h4   or   AR2 = h4/h1 if h4>h1     (4-5) 
 

Aspect Ratio = AR1 if AR1>AR2   or   Aspect Ratio = AR2 if AR2>AR1 (4-6) 
 
 
 

The element side length, aspect ratio, and skew angle measure the performance of 

the meshing components of the algorithm.  The number of triangles in the surface mesh is 

also checked.  It is not a direct measure of the algorithm’s performance, but it is relevant 

to cellular structure quality. 

To evaluate the performance of the offset function of the algorithm, the length of 

the actual offset is compared to the desired offset, which is an input to the algorithm.  

Figure 4.3 shows the distance, D, that is measured to determine the quality of the offset 

function.   
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Figure 4.3:  Offset distance measurement 

 
 
 

The measured offset value should be equal to the requested value.  There are two 

major causes of deviation.  The first is due to curvature or angles in the surface.  If the 

surface has concave angles at some points, the offset distance at those points will be 

larger than the requested value.  The other cause of deviation results from the sampling of 

the surface.  For both methods of offsetting described in Chapter 3, the sampling rate 

used on the input surface will affect the quality of the offset because both methods use 

the sampled points to calculate the offset surface.  The calculation time is also recorded 

for the offsetting function.  Time is not a quality measure, but it is relevant to efficiency 

of the algorithm. 
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4.2 Example Problems 

The following examples were chosen to show that the algorithm used to design 

cellular material can be used to create cellular structure for a wide range of geometry.  

The examples show different cases of boundary matching, surface curvature, sampling 

rates, and mesh sizes.  A summary of the examples presented in this section is shown in 

Table 4-1. 

 
 

Table 4-1:  Example descriptions 

 
 
 

4.2.1 Two planar surfaces meeting at an angle 

In this example, two planar surfaces meet at an angle, as seen in Figure 4.4.  This 

is the simplest example.  The purpose of this example is to show the algorithm’s 

performance given a simple geometry and a single, simple partition boundary.  Also, for 

this example, there is no distortion from flattening because the input geometry has no 

curvature.  Therefore, this example can be compared to examples with curved surfaces to 

determine if some poor element quality effects are due to the flattening procedure.   

 
 
 

Example Description Features
1 Two planar surfaces meeting at an angle Simple geometry, single partition boundary
2 Half Cylinder Uniform curvature in one direction, multiple partition boundaries
3 Planar surface meeting a concave surface Dissimilar geometries interfacing, multiple partition boundaries
4 Planar surface meeting a convex surface Dissimilar geometries interfacing, multiple partition boundaries
5 Circular Hemisphere Uniform curvature in multiple directions, multiple partition boundaries
6 Irregular Conic non-uniform curvature in one direction, uniform curvature in one direction
7 Surface with a saddle point, one partition Complex curvature, single partition
8 Surface with a saddle point, two partitions Complex curvature, multiple partitions
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Figure 4.4:  Two flat surfaces meeting at an angle 

 
 
 

Table 4-2 shows information about the input surface for this example.  Table 4-3 

gives inputs for the algorithm as well as the number of partitions created and the 

sampling rate generated from the input sampling criterion.  For this example, if the angle 

between the normal vectors of adjacent triangular faces on the input surface is more than 

one radian, the faces are put into different partitions.  The resulting two partitions created 

from this input are shown in Figure 4.5.  The division of the surface is very straight-

forward for this example because of the distinct angle between the two planes. 

 
 

Table 4-2:  Surface data for example problem with two flat surfaces 

 
 
 

Example Surface 1 Surface 2
Height 1 

(in)
Width 1 

(in)
Height 2 

(in)
Width 2 

(in)
1 Plane Plane 3 2 3 2.5

Geometry Description Dimensions

offset direction 
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Table 4-3:  Algorithm inputs for example with two flat surfaces 

 
 
 
 
 
 
 
 

 
Figure 4.5:  Input of two flat surfaces divided into two partitions 

 
 
 

The surface mesh produced for this example is shown in Figure 4.6 below.  The 

mesh matches very well at the partition boundary, and the mesh in the middle of each 

planar surface is approximately square.  Near the edges of the surface, however, 

quadrilateral elements tend to be longer in one direction.  This is due to the mesh size 
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Side Length 
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Calculated ValuesAlgorithm Inputs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

1

2

3

1

1.5

2

2.5

3

X

Y

Z



 97

selected for the surface.  The surface cannot be exactly divided into an integer number of 

elements, and elements at the edges are modified to fit to the surface boundary.  Figure 

4.6 also shows that at some corners, triangular elements are formed.  This is because the 

algorithm only recognizes “corners” when they are part of a partition boundary.  When 

the mesh size comes very close to fitting the surface perfectly, the corners are often 

captured.  In Figure 4.6, the mesh does not fit the planar surface on the left as well as the 

surface on the right, and the corners for the left surface have been cut off with a triangular 

element as a result. 

 Table 4-4 shows the quality data for the mesh in Figure 4.6.  For this simple 

example, there are very few triangular elements.  The mean skew is about four degrees 

with a standard deviation of about four degrees.  Therefore, over 93% of quadrilateral 

elements have skew below ten degrees.  The average aspect ratio is 20% past square.  

Because of the size of the mesh, the distorted border elements comprise a significant 

percentage of the total element counts.  Therefore, those distorted elements impact the 

aspect ratio statistics.  All elements have an aspect ratio below three, which is the quality 

criterion from finite element analysis. 

The side length statistics for this example are also affected by the distorted border 

elements.  The algorithm eliminates element side lengths that are less than one quarter of 

the desired length as a quality check.  There is no cutoff for maximum side length.  Table 

4-4 shows that the resulting mesh has no side lengths less than the one quarter cutoff 

length.   Element lengths vary from 47% to 129% of the desired length.  The standard 

deviation is approximately 15% of the desired length.  Therefore approximately 70% of 
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the quadrilateral side lengths are within 15% of the desired length, and 50% are within 

10% of the desired length. 

 
 

 
Figure 4.6:  Input of two flat surfaces with mesh 
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Table 4-4:  Mesh quality for input of two flat surfaces 

 
 
 
 

The input surface with computed cellular structure is shown in Figure 4.7.   The 

cellular structure sits between the mesh on the input surface and the mesh on the offset 

surface.  The mesh on the offset surface is directly translated from the mesh created for 

the input surface, so it will have the same general quality as the mesh on the input 

surface.  The algorithm has no function to modify or improve mesh on the offset surface.  

The algorithm is only responsible for defining the offset surface.  The offset is computed 

using two different methods.  Data for both methods is presented in Table 4-5. 

As seen in Table 4-5, values for both methods are approximately the same.  Both 

have an average offset value very close to the desired value with a very low standard 

deviation.  The maximum value is different from the desired value primarily because of 

the concave angle in the surface.  The major difference for this example is the calculation 

time.  The fast offset method is more than ten times faster than the other method. 

Output Value
Number of Quads 466
Number of Tris 2
Percentage Tris 0.4%
Quad Skew

Min (degrees) 0.021
Max (degrees) 20.403
Mean (degrees) 4.218
Standard Deviation (degrees) 3.861

Quad Aspect Ratio
Min 1.005
Max 2.109
Mean 1.208
Standard Deviation 0.243

Quad Side Length
Desired (in) 0.175
Min (in) 0.082
Max (in) 0.225
Mean (in) 0.171
Standard Deviation (in) 0.026
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Figure 4.7:  Input of two flat surfaces with truss cellular structure 

 
 
 
 
 

Table 4-5:  Offset quality for two flat surfaces 

 

Output Value
Fast Offset

Time (seconds) 53
Desired Offset (in) 0.150
Minimun Offset (in) 0.150
Maximum Offset (in) 0.172
Mean Offset (in) 0.151
Standard Deviation (in) 0.0041

Original Offset
Time (seconds) 584
Desired Offset (in) 0.150
Minimun Offset (in) 0.150
Maximum Offset (in) 0.187
Mean Offset (in) 0.151
Standard Deviation (in) 0.0053
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4.2.2 Cylindrical surface 

The purpose of this example is to test the function of the cellular material 

generating algorithm for a surface with curvature in one direction.  The cylindrical 

surface in this example, shown in Figure 4.8, has a uniform radius and arc length along 

its length.  This example will show how well the algorithm can handle multiple partition 

boundaries and curvature.  It is also an example with no concave angles, which gives a 

straight-forward result for the offsetting function. 

 
 

 
Figure 4.8:  Half regular cylinder 

 
 

Table 4-6 shows the criterion input to the algorithm to create three partitions.  If 

the angle between the normal vectors of adjacent triangular faces on the input surface is 

more than 0.87 radian, the faces are put into different partitions.  The resulting three 

partitions created from this input are shown in Figure 4.9.   

offset direction 
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Table 4-6:  Algorithm data for cylindrical surface example 

 
 
 
 
 
 
 

 
Figure 4.9:  Cylindrical input surface divided into three partitions 

 
 
 

The division of cylindrical surfaces can sometimes produce partitions that do not 

flatten to rectangles.  An example of two ways a typical cylindrical surface can be 

divided is shown in Figure 4.10.  Figure 4.10a shows an example of an original surface 

represented by triangular faces.  Figure 4.10b shows two partitions formed from the 

original input surface that will be flattened to rectangles.  This partitioning is preferred.  

Figure 4.10c shows two partitions that will not flatten to rectangles.  This produces some 
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Height 
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Radius 

(in)
Element Side 

Length (in)
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Distance 
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Number of 
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Sample 
Length (in)
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poor elements because square mesh elements are being fit to an irregularly shaped 

partition.  For this example with a cylindrical surface input, one partition can be flattened 

to a rectangle, and the other two are irregular.  The mesh quality is affected by this 

division of the surface. 

 
 
 

 
Figure 4.10: Partition division examples 

 
 

The mesh on the input surface is shown in Figure 4.11.  The partition boundaries 

are easily identified within the mesh.  One of the three partitions is small compared to the 

mesh size, so the portion of elements that are approximately square is fairly low.  The 

other two partitions have a number of triangular and irregular elements at the boundary.  

However, the two larger partitions have large sections with very regular mesh. 

Table 4-7 shows the surface mesh quality statistics.  The average skew for 

quadrilateral elements is approximately 2.5 degrees, with a standard deviation for skew of 

about three degrees.  This is a good result for skew.  Over 99.6% of quadrilateral 

elements have a skew of less than ten degrees.  The average aspect is 23% past square.  A 

large contribution to the aspect ratio value is elements at the partition boundaries.  The 

Input Surface Partition1             Partition2          Partition1                 Partition2 

a) b) c) 
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previous example had only one simple partition boundary and showed an average aspect 

ratio of only 20% past square.  This example has two boundaries, with one that 

complicates the meshing.  Therefore, the slightly increased aspect ratio is not unexpected. 

Element side lengths are also affected by the irregular partition boundaries in this 

example.  Side lengths range from 35% to 153% of desired length.  This meets the 

criterion of a minimum of 25% of desired length that is specified in the algorithm.  The 

standard deviation of side length is 15.5 % of the desire length.  Therefore, 66% of 

elements are within 15% of the desired length, and 47% are within 10% of the desired 

length.   

 
 

 
Figure 4.11:  Cylindrical input surface with mesh 
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Table 4-7:  Cylindrical surface mesh quality 

 
 
 

 
The input surface with cellular structure is shown in Figure 4.12.  This example 

provides a direct comparison of the two offset techniques because of the simple geometry 

and the lack of concave angles.  Table 4-8 shows the result of the offset.  Both methods 

produce very good results.  The most distinguishing statistic is calculation time.  The 

faster method time is approximately 20 minutes.  The original offsetting method takes 

approximately 5000 minutes, or 80 hours.  

 
 

Output Value
Number of Quads 1153
Number of Tris 9
Percentage Tris 0.8%
Quad Skew

Min (degrees) 0.000
Max (degrees) 22.997
Mean (degrees) 2.462
Standard Deviation (degrees) 2.826

Quad Aspect Ratio
Min 1.0029
Max 3.0799
Mean 1.2318
Standard Deviation 0.2529

Quad Side Length
Desired (in) 0.085
Min (in) 0.0300
Max (in) 0.1298
Mean (in) 0.0826
Standard Deviation (in) 0.0132
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Figure 4.12:  Cylindrical input surface with cellular structure 

 
 
 
 
 
 
 

Table 4-8:  Cylindrical surface offset quality 

 

Output Value
Fast Offset

Time (seconds) 1352
Desired Offset (in) 0.080
Minimun Offset (in) 0.079919
Maximum Offset (in) 0.080
Mean Offset (in) 0.079993
Standard Deviation (in) 1.70E-05

Original Offset
Time (seconds) 286137
Desired Offset (in) 0.080
Minimun Offset (in) 0.079988
Maximum Offset (in) 0.080
Mean Offset (in) 0.079995
Standard Deviation (in) 6.00E-06
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4.2.3 Flat plane meeting a concave surface 

This example is slightly more complicated than the example using two planar 

surfaces.  The purpose of this example is to evaluate the performance of the algorithm for 

concave curved surfaces meeting flat surfaces.  It is possible that having curved and flat 

surfaces come together in this way can produce very bad partition divisions and poor 

mesh.  The input surface used for this example is shown in Figure 4.13. 

 
 
 

 
Figure 4.13:  Flat surface meeting a concave surface at an angle 

 
 
 

Surface data is shown in Table 4-9.  Because of the curvature, several partitions 

will be created.  The input for the algorithm is shown in Table 4-10.  An input of 0.5 

radian for the angle criterion produces four separate partitions, as shown in Figure 4.14.  

The surface division produces a good result.  The flat portion of the input surface is 

offset direction 
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separated cleanly from the curved portion, and the curved portion is divided nearly 

evenly into three partitions that flatten to rectangles. 

 
 

Table 4-9:  Surface data for flat/concave surface example 

 
 
 
 
 
 
 
 

Table 4-10:  Algorithm input data for flat/concave surface example 

 
 
 
 
 
 
 
 

Example

Element 
Side Length 

(in)

Offset 
Distance 

(in)

Angle 
Criterion 
(radians)

Sampling 
Criterion

Number of 
Partitions

Sample 
Length (in)

3 0.320 0.200 0.50 40 4 0.125

Calculated ValuesAlgorithm Inputs

Example Surface 1 Surface 2
Height 1 

(in)
Width 1 

(in)
Height 2 

(in)
Radius 2 

(in)
3 Plane 1/4 Cylinder 5 9 5 5

Geometry Description Dimensions
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Figure 4.14:  Flat/concave input surface divided into four partitions 
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The surface mesh for the input surface in this example is shown in Figure 4.15.  

As in both previous examples, elements at the boundaries of the surface are noticeably 

distorted.  However, there are fewer distorted boundary elements, as a percentage of total 

elements, in this example.  There are very few triangular elements.  Again, the triangular 

elements are at the corners of the surface because these corners are not specifically 

recognized by the algorithm.  The mesh at partition boundaries is generally good because 

there are equal numbers of elements on either side of each partition so that few skewed 

and no triangular elements are formed. 

The mesh quality statistics for this example are shown in Table 4-11.  The mean 

skew for this example is 4.5 degrees.  The standard deviation for skew is 3.34, and 95% 

of quadrilateral elements in this example have a skew of less than ten degrees.  The 

average aspect ratio is 16% past square.  This is less than in the example with two flat 

surfaces, partly due to the fact that there is a lower percentage of distorted elements from 

the boundary region.  Also, the mesh size selected for this example fits the input very 

well.  The partition boundaries are almost indistinguishable on the meshed surface.  

Again, no elements have an aspect ratio greater than three, which is the finite element 

analysis quality criterion. 

The side length statistics for this example are also affected by the distorted border 

elements.  Table 4-11 shows that the resulting mesh for this example has no side lengths 

less than the one quarter of the desired length, which is a built in quality criterion.   

Element lengths vary from 35% to 137% of the desired length.  The standard deviation is 

approximately 15% of the desired length.  Therefore approximately 70% of the 
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quadrilateral side lengths are within 15% of the desired length, and 50% are within 10% 

of the desired length.   

 
 

 
Figure 4.15:  Flat/concave input surface with mesh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

2

4

0

5

6

8

10

12

14

16

18

XY

Z

0

5 0

5

6

8

10

12

14

16

18

YX

Z



 112

 
Table 4-11:  Flat/concave surface mesh quality 

 
 
 
 

The input surface with computed cellular structure for this example is shown in 

Figure 4.16.  Offset values for both the original and fast methods are shown in  

Table 4-12.  Both have minimum and average offset values very close to the desired 

value.  The maximum values are slightly different, but it is unclear which is “correct”.  

The maximum value is different from the desired value in this case because of the 

concave angle.  The fast method produces a much smaller standard deviation.  The 

standard deviation for the offset length for the original offsetting method is nearly two 

percent of the desired length.  The standard deviation for the fast method is less than one 

half of one percent of desired length, which is a better result.  The fast method is also 

over 13 times faster than the original method. 

 

Output Value
Number of Quads 862
Number of Tris 2
Percentage Tris 0.2%
Quad Skew

Min (degrees) 0.000
Max (degrees) 17.325
Mean (degrees) 4.503
Standard Deviation (degrees) 3.334

Quad Aspect Ratio
Min 1.002
Max 2.121
Mean 1.162
Standard Deviation 0.146

Quad Side Length
Desired (in) 0.320
Min (in) 0.113
Max (in) 0.438
Mean (in) 0.318
Standard Deviation (in) 0.048
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Figure 4.16:  Flat/concave input surface with cellular structure 

 
 
 
 
 
 

Table 4-12:  Flat/concave surface offset quality 

 

Output Value
Fast Offset

Time (seconds) 195
Desired Offset (in) 0.200
Minimun Offset (in) 0.19991
Maximum Offset (in) 0.2116
Mean Offset (in) 0.20010
Standard Deviation (in) 0.00087

Original Offset
Time (seconds) 2629
Desired Offset (in) 0.200
Minimun Offset (in) 0.20000
Maximum Offset (in) 0.2299
Mean Offset (in) 0.20097
Standard Deviation (in) 0.00326
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4.2.4 Flat plane meeting a convex surface 

This example is similar to the previous example of a flat surface meeting a 

concave surface.  The purpose of this example is to evaluate the performance of the 

algorithm for convex curved surfaces meeting flat surfaces.  Many complex surface 

inputs may contain areas with this type of interface, and it is possible that surfaces with 

this configuration can produce problematic partitions or mesh quality.  The input surface 

for this example is shown in Figure 4.17. 

 
 

 
Figure 4.17:  Flat surface meeting a convex surface at an angle 

 
 
 

A description of the surface used in this example is given in Table 4-13.  The 

input for the algorithm is shown in Table 4-14.  An input of 0.5 radian for the angle 

criterion produces four separate partitions, as shown in Figure 4.18.  The surface division 

produces a good result.  The flat portion of the input surface is separated cleanly from the 

curved portion, and the curved portion is divided nearly evenly into three partitions that 

flatten to rectangles. 

offset direction 
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Table 4-13:  Surface data for flat/convex surface example 

 
 
 

 
 
 

 
 

Table 4-14:  Algorithm input data for flat/convex surface example 

 
 
 
 
 

Example

Element 
Side Length 

(in)

Offset 
Distance 

(in)

Angle 
Criterion 
(radians)

Sampling 
Criterion

Number of 
Partitions

Sample 
Length (in)

4 0.358 0.200 0.50 70 4 0.1426

Calculated ValuesAlgorithm Inputs

Example Surface 1 Surface 2
Height 1 

(in)
Width 1 

(in)
Height 2 

(in)
Radius 2 

(in)
4 Plane 1/4 Cylinder 5 8.5 5 5

Geometry Description Dimensions
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Figure 4.18:  Flat/convex input surface divided into four partitions 
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The input surface with mesh is shown in Figure 4.19.  The mesh size used for this 

input surface fits very well.  Elements at the partition and surface boundaries are barely 

distorted on visual inspection.  However, there are some elements on the interior of the 

surface that are noticeably distorted.  This is due to a low sampling density.  For the 

example with a concave surface meeting a flat surface above, the sampling distance was 

approximately 30% of the desired mesh side length.  In that example, the interior 

elements are more regular.  The deviation from square is largely from boundary elements.  

In this example with a convex surface meeting a flat surface, the sampling difference is 

40% of the desired mesh side length, and interior elements are noticeably distorted. 

The quality statistics for the mesh shown in Figure 4.19 are given in Table 4-15.  

The average skew is 3.34 degrees with a standard deviation of about three degrees.  

Therefore, 99% of elements have a skew below ten degrees.  Even though elements 

appear distorted, the skew values for this example are low.  The average aspect ratio is 

17% past square, and the maximum aspect ratio is only 1.7, which is well below the 

aspect ratio of three that is defined as a bad element.  These quality statistics are not 

significantly worse than for any of the previous examples, even though visually the mesh 

seems more distorted. 

The side lengths range from 68% to 137% of the desired length.  The average side 

length is 101% of desired length, and the standard deviation is about 15% of desired side 

length.  Therefore, 50% of element sides are within 10% of desired length, and 69% of 

elements are within 15% of desired length.  These statistics are very similar to results 

from previous examples. 
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Figure 4.19:  Flat/convex input surface with mesh 
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Table 4-15:  Flat/convex surface quality mesh 

 
 
 
 

The surface with cellular material applied is shown in Figure 4.20.  This 

represents the input surfaced mesh, offset surface with mesh, and a truss pattern inserted 

between.  The offset quality data for this example are given in Table 4-16.  Both the 

original and fast methods produce good results.  Average and minimum values are almost 

exactly the same for both methods and are very accurate.  As with other examples that 

feature concave angles, the maximum values for the two methods differ.  The standard 

deviations are both very low.  Again, the computation time difference is significant.  The 

original method takes almost 14 times longer than the fast method. 

Output Value
Number of Quads 614
Number of Tris 2
Percentage Tris 0.3%
Quad Skew

Min (degrees) 0.000
Max (degrees) 15.820
Mean (degrees) 3.343
Standard Deviation (degrees) 2.897

Quad Aspect Ratio
Min 1.003
Max 1.695
Mean 1.173
Standard Deviation 0.134

Quad Side Length
Desired (in) 0.358
Min (in) 0.244
Max (in) 0.489
Mean (in) 0.362
Standard Deviation (in) 0.053
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Figure 4.20:  Flat/convex input surface with cellular structure 

 
 
 
 
 
 
 

Table 4-16:  Flat/convex surface offset quality 

 

Output Value
Fast Offset

Time (seconds) 118
Desired Offset (in) 0.200
Minimun Offset (in) 0.19992
Maximum Offset (in) 0.222
Mean Offset (in) 0.2004
Standard Deviation (in) 0.0027

Original Offset
Time (seconds) 1607
Desired Offset (in) 0.200
Minimun Offset (in) 0.200
Maximum Offset (in) 0.238
Mean Offset (in) 0.2008
Standard Deviation (in) 0.0048
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4.2.5 Spherical surface 

The purpose of this example is to test the performance of the algorithm for a 

surface with curvature in two directions.  For this example, a spherical hemisphere is 

used, as shown in Figure 4.21.  A spherical hemisphere has uniform curvature. 

 
 

 
Figure 4.21:  Spherical hemisphere 

 
 

The input for the algorithm is shown in Table 4-17.  The curvature of the sphere 

creates a more complicated set of partitions.  The five partitions created are shown in 

Figure 4.22.   A sphere represented in an STL file has many more triangular faces than a 

flat surface or a cylindrical surface.  As a result, the partition boundaries can be very 

jagged. 

 
 

Table 4-17:  Algorithm data for the hemispherical surface example 

 
 

 

Example
Element Side 

Length (in)

Offset 
Distance 

(in)

Angle 
Criterion 
(radians)

Sampling 
Criterion

Number of 
Partitions

Sample 
Length (in)

5 0.110 0.100 1.20 50 5 0.04

Calculated ValuesAlgorithm InputsGeometry Description Dimensions

Surface
Hemisphere 1

Radius (in)

offset direction 
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Figure 4.22:  Hemispherical input surface divided into five partitions 

 
 
 

The mesh produced for the hemispherical surface is shown in Figure 4.23.  This is 

the first example where many triangular elements are present.  Triangular elements and 

other distorted elements are concentrated at the partition boundaries.  There are several 

contributors to the mesh problems at partition boundaries.  The meshes from adjacent 

boundaries are coming in at different angles, which makes even boundaries with equal 

numbers of elements difficult to match without creating bad elements.  Also, the 

boundary itself is jagged, which can produce bad mesh at the interface. 

The mesh quality statistics are shown in Table 4-18.  Over 20% of the elements 

produced are triangular elements.  The goal is to have as few triangular elements as 

possible, so this is undesirable.  If a smaller mesh size were chosen, this percentage could 

likely be decreased.  However, a mesh size that is too small may encounter other 

problems, especially with the jagged boundary.  The mesh in areas away from the 
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boundaries is generally good by visual inspection and covers a substantial portion of the 

surface area. 

The maximum skew for this example is approximately 40 degrees, which is above 

the cutoff of 30 degrees that is considered a good element for finite element analysis.  

This value is a single outlier case.  It is approximately five standard deviations above the 

mean.  The average skew value is 6.9 degrees, and the standard deviation is 6.8 degrees.  

Approximately 67% of quadrilateral elements have a skew of less than ten degrees.  This 

result is expectedly worse than previous examples because the complicated boundary 

interfaces. 

The average aspect ratio is 17% past square.  This result is not much different 

than previous examples, and the maximum aspect ratio is 2.3, which is below the cutoff 

of three.  Therefore, for this example, skew is more affected than aspect ratio by the 

complicated partition division. 

Element side lengths range from 36% to 212% of the desired mesh side length.  

Approximately 46% of quadrilateral elements are within 10% of the desired side length, 

and 64% are within 15% of desired side length.  These results are slightly worse than the 

previous examples.  For instance, the previous example with a convex surface meeting a 

flat surface has 69% of elements within 15% of the desired length.  That example has 

more quality problems with mesh away from boundaries, and the hemispherical example 

has more quality problems with boundary elements.  
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Figure 4.23:  Hemispherical input surface with mesh 

 
 
 
 
 
 
 

Table 4-18:  Hemispherical surface mesh quality 

 
 
 

Output Value
Number of Quads 480
Number of Tris 136
Percentage Tris 22.1%
Quad Skew

Min (degrees) 0.001
Max (degrees) 39.927
Mean (degrees) 6.927
Standard Deviation (degrees) 6.757

Quad Aspect Ratio
Min 1.001
Max 2.282
Mean 1.168
Standard Deviation 0.188

Quad Side Length
Desired (in) 0.110
Min (in) 0.039
Max (in) 0.233
Mean (in) 0.109
Standard Deviation (in) 0.018
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The hemispherical surface with cellular material applied is shown in Figure 4.24.  

This is another example that features no concave angles.  The offset quality results are 

shown in Table 4-19.  The result for the cylindrical surface was so similar for the two 

methods that the only distinguishing result was computation time.  For this example, the 

mean and minimum values are very similar for the two methods.  The fast method tends 

to be slightly less than the requested value, and the original method tends to be slightly 

higher than the requested value for offset distance.  The result is the same within 

reasonable limits, though.  However, for the maximum value, the difference is noticeable.  

For the fast method, the maximum offset is only one half of one percent above the 

requested value.  For the original method, the maximum offset is nearly four percent 

greater than the requested value.  The standard deviation is low for both, but it is lower 

for the fast method.  These statistics indicate that the fast method of offsetting is more 

accurate.  Even in cases where the fast method is not noticeably better than the original 

method, it is preferable because it is more efficient.  In this example, the fast method 

saves nearly seven hours of computation time. 

 
 
 



 126

 
Figure 4.24:  Hemispherical input surface with cellular structure 
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Table 4-19:  Hemispherical surface offset quality 

 
 

4.2.6 Conical surface with varying curvature 

This example is similar to the spherical hemisphere example, except the curvature 

is not uniform.  The purpose of this example is to test the function of the algorithm for a 

surface with varying curvature.  All previous examples with curvature have featured 

curvature that is uniform.  This example will test whether irregular curvature produces 

low quality results for quadrilateral elements due to the non-uniform curvature.  The 

input surface for this example is shown in Figure 4.25. 

 
 

Output Value
Fast Offset

Time (seconds) 109
Desired Offset (in) 0.100
Minimun Offset (in) 0.09990
Maximum Offset (in) 0.1005
Mean Offset (in) 0.09998
Standard Deviation (in) 2.90E-05

Original Offset
Time (seconds) 23699
Desired Offset (in) 0.100
Minimun Offset (in) 0.09997
Maximum Offset (in) 0.1036
Mean Offset (in) 0.10006
Standard Deviation (in) 0.00037
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Figure 4.25:  Conical surface with varying curvature 

 
 
 

The algorithm input is shown in Table 4-20.  The angle input is nearly a quarter of 

a revolution, so it makes sense that the input would produce four partitions for a closed 

conical surface.  The partitions are shown in Figure 4.26.  This surface also produces 

some jagged partition boundaries, but they are less severe than the spherical hemisphere 

example above.  

 
 

Table 4-20:  Algorithm data for conical surface example 

 
 

 
 

Example

Max 
Radius 

(in)

Min 
Radius 

(in) Height (in)
Element Side 

Length (in)

Offset 
Distance 

(in)

Angle 
Criterion 
(radians)

Sampling 
Criterion

Number of 
Partitions

Sample 
Length (in)

6 0.740 0.323 1.368 0.110 0.100 1.30 50 4 0.0296

Calculated ValuesAlgorithm Inputs

Surface
Conic

Geometry Description Dimensions

offset direction 
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Figure 4.26:  Conical input surface divided into four partitions 

 
 
 

The mesh for the conical input surface is shown in Figure 4.27.  There are some 

triangular and distorted elements near the boundaries, but the mesh is good for large 

portions of the surface.  The mesh quality statistics are given in Table 4-21. 

There are about 11% triangular elements.  The maximum skew is 30.6 degrees, 

which is slightly higher than the finite element analysis cutoff of 30 degrees.  This is not 

much over the cutoff and appears to be a single outlier.  The average skew is only 5.6 

degrees with a standard deviation of about three degrees.  The skew of 30.6 degrees is 

nearly nine standard deviations above the mean.  About 94% of elements have a skew 

below ten degrees.  The average aspect ratio is 16% past square.  The maximum aspect 

ratio is approaching the quality cutoff but is still below.   

The side lengths range from 34% to 196% to the desired mesh side length.  About 

53% of quadrilateral element sides are within 10% of desired side length, and 72% of 

side lengths are within 15% of the desired side length. 
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Figure 4.27:  Conical input surface with mesh 

 
 
 
 
 
 
 
 

Table 4-21:  Conical surface mesh quality 

 
 

 
 

The surface with cellular material applied is shown in Figure 4.28.  The offset 

statistics are shown in Table 4-22.  The offset result is very similar to the result for the 

Output Value
Number of Quads 499
Number of Tris 62
Percentage Tris 11.1%
Quad Skew

Min (degrees) 0.000
Max (degrees) 30.592
Mean (degrees) 5.602
Standard Deviation (degrees) 5.713

Quad Aspect Ratio
Min 1.0010
Max 2.8397
Mean 1.1620
Standard Deviation 0.2418

Quad Side Length
Desired (in) 0.110
Min (in) 0.0367
Max (in) 0.2162
Mean (in) 0.1074
Standard Deviation (in) 0.0152
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hemisphere example above.  The mean and minimum values are almost identical for the 

two cases.  The differences are in calculation time and the maximum value.  Again, the 

fast offsetting method is more accurate, with a maximum value closer to the requested 

offset value and a smaller standard deviation for offset distances.  The computation is 

also much faster. 
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Figure 4.28:  Conical input surface with cellular structure 
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Table 4-22:  Conical surface offset quality 

 
 

4.2.7 Surface with a saddle point with one partition 

The purpose of this example is to test the performance of the algorithm for a 

surface with complex curvature.  The surface used in this example is shown in Figure 

4.29.  The surface has a saddle point, and the curvature is not constant in any direction. 

 
 

 
Figure 4.29:  Surface with a saddle point 

 
 

Output Value
Fast Offset

Time (seconds) 121
Desired Offset (in) 0.100
Minimun Offset (in) 0.09990
Maximum Offset (in) 0.1000
Mean Offset (in) 0.09999
Standard Deviation (in) 0.000019

Original Offset
Time (seconds) 33584
Desired Offset (in) 0.100
Minimun Offset (in) 0.10000
Maximum Offset (in) 0.1033
Mean Offset (in) 0.10003
Standard Deviation (in) 0.00029

offset direction 



 134

The input to the algorithm for partitioning is shown in Table 4-23.  With this 

example, it is possible to have only one partition.  The angle criterion of 0.5 radian 

produces no partitions breaks, so the input surface is itself the only partition. 

 
 

Table 4-23:  Algorithm data for saddle surface example 

 
 
 
 

The mesh produced for the input surface in this example is shown in Figure 4.30.  

This mesh has both distorted elements due to boundaries and in the center of the surface 

due to sampling rate.   The mesh quality statistics are given in Table 4-24.   

There are few triangular elements in this example.  Most are located at the 

corners, partially because the corners of the surface are rounded.  There are a few 

triangular elements that are the result of quality operations. 

The average skew for quadrilateral elements in this example is about five degrees, 

with a standard deviation of 4.3 degrees.  Over 88% of quadrilateral elements have a 

skew less than ten degrees.  The average aspect ratio is 17% past square.  Maximum skew 

and aspect ratio are below the finite element quality cutoffs.  

Quadrilateral element side lengths range from 44% to 194% of the desired side 

length.  About 51% of element side lengths are within 10% of desired length, and 70% of 

side lengths are within 15% of the desired length. 

 
 
 

Example
Height 

(in)
Width 

(in)
Element Side 

Length (in)

Offset 
Distance 

(in)

Angle 
Criterion 
(radians)

Sampling 
Criterion

Number of 
Partitions

Sample 
Length (in)

7 128 104 6.604 6.350 0.50 50 1 2.5492

Calculated ValuesAlgorithm Inputs

Surface
Saddle

Geometry Description Dimensions
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Figure 4.30:  Input saddle surface with mesh 

 
 
 
 
 
 

Table 4-24:  Saddle surface mesh quality 

 

Output Value
Number of Quads 311
Number of Tris 9
Percentage Tris 2.8%
Quad Skew

Min (degrees) 0.016
Max (degrees) 25.005
Mean (degrees) 4.870
Standard Deviation (degrees) 4.302

Quad Aspect Ratio
Min 1.001
Max 2.414
Mean 1.173
Standard Deviation 0.020

Quad Side Length
Desired (in) 6.604
Min (in) 2.910
Max (in) 12.788
Mean (in) 6.493
Standard Deviation (in) 0.950
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The input surface with cellular material applied is shown in Figure 4.31.  Offset 

quality statistics are given in Table 4-25.  For this example, it is unclear which method 

produces a better result.  The fast method produces a mean value that is almost exactly 

equal to the desired result.  However, this surface has an area that is concave, so the mean 

value should not be exactly equal to the desired value.  The fast method tends to produce 

a value that is slightly lower than the desired or correct value, and the original offsetting 

method tends to produce a value slightly higher than desire or correct for the offset.   

 
 

 
Figure 4.31:  Input saddle surface with cellular material 
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Table 4-25:  Saddle surface offset quality 

 
 

4.2.8 Surface with a saddle point with two partitions 

The purpose of this example is to show the effect of adding a partition boundary 

to a surface with complex curvature.  This will show the partition that will be produced 

for this type of surface and the element quality effects. 

The algorithm input to produce two partitions is shown in Table 4-26.  The 

resulting partitions are shown in Figure 4.32.  The partitions and partition boundary for 

this example are not ideal.  The partitions are not approximately rectangular, especially 

the smaller partition.  The boundary between partitions is very jagged. 

 
 

Table 4-26:  Algorithm data for saddle surface example, two partitions 

 
 

 
 
 

Example
Height 

(in)
Width 
(in)

Element Side 
Length (in)

Offset 
Distance 

(in)

Angle 
Criterion 
(radians)

Sampling 
Criterion

Number of 
Partitions

Sample 
Length (in)

8 128 104 6.400 6.350 0.29 50 2 2.5492
Surface
Saddle

Calculated ValuesAlgorithm InputsGeometry Description Dimensions

Output Value
Fast Offset

Time (seconds) 64
Desired Offset (in) 6.350
Minimun Offset (in) 6.34990
Maximum Offset (in) 6.3517
Mean Offset (in) 6.34998
Standard Deviation (in) 0.00012

Original Offset
Time (seconds) 1300
Desired Offset (in) 6.350
Minimun Offset (in) 6.34990
Maximum Offset (in) 6.7030
Mean Offset (in) 6.37000
Standard Deviation (in) 0.05987
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Figure 4.32:  Input saddle surface divided into two partitions 

 
 
 

The mesh for the surface in this example is shown in Figure 4.33.  The element 

quality is poor near the boundary.  There are many triangular elements along the partition 

boundary.  Also, because of the way the mesh on the smaller partition is oriented, there 

are several triangular elements along the edges of the surface. 

The mesh quality statistics are shown in Table 4-27 compared to the statistics for 

the same surface with only one partition.  Surprisingly, the mesh quality for the surface 

with two partitions is not significantly worse, and in some cases better, than for the 

surface with one partition.  This is generally due to poor elements being broken down 

into triangular elements by quality control operations, leaving only more well formulated 

quadrilateral elements to contribute to the mesh statistics. 
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Figure 4.33:  Input saddle surface with two partitions with mesh 

 
 
 
 

Table 4-27:  Comparison of mesh quality data for a saddle surface 

 

1 2
Output Value Value
Number of Quads 311 294
Number of Tris 9 76
Percentage Tris 2.8% 20.5%
Quad Skew

Min (degrees) 0.002 0.003
Max (degrees) 25.005 21.245
Mean (degrees) 4.870 4.812
Standard Deviation (degrees) 4.302 4.156

Quad Aspect Ratio
Min 1.0006 1.0016
Max 2.4136 2.0271
Mean 1.1731 1.1489
Standard Deviation 0.0205 0.1665

Quad Side Length
Desired (in) 6.604 6.400
Min (%desired) 44.06% 34.49%
Max (%desired) 193.64% 162.92%
Mean (%desired) 98.32% 99.85%
Standard Deviation (%desired) 14.38% 13.82%
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The input surface with cellular material applied is shown in Figure 4.34.  The area 

near the partition boundary is noticeably affected by the presence of many triangular 

elements, which is an undesirable result.  However, the truss formed by triangular 

elements will almost always be stiffer than the accompanying quadrilateral elements, 

which should make the truss shown below viable for all but the most sensitive structural 

cases. 

 
 

 
Figure 4.34:  Input saddle surface with two partitions with cellular material 
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Table 4-28:  Offset quality for saddle surface with two partitions 

 
 

4.3 Sensitivity 

Some results from the examples above are difficult to directly interpret because 

many factors are changing, such as mesh size, surface size and shape, sampling rate, etc.  

The purpose of the following studies is to isolate mesh quality effects from a single input.  

4.3.1 Mesh size sensitivity 

To test the effect of mesh size on quality, the same surface with the same 

sampling density and number of partitions is fit with different mesh sizes.  The surface 

and partitioning is the same as in the example in Section 4.2.3.  The sampling rate used is 

40.  The resulting mesh is shown in Figure 4.35.  Figure 4.35a shows mesh with a desired 

quadrilateral side length of 0.22 length units.  Figure 4.35b shows mesh with desired side 

length of 0.32.  Figure 4.35c shows mesh with desired side length of 0.42, and Figure 

4.35d show mesh with desired length of 0.60. 

Output Value
Fast Offset

Time (seconds) 68
Desired Offset (in) 6.350
Minimun Offset (in) 6.3499
Maximum Offset (in) 6.3524
Mean Offset (in) 6.349996
Standard Deviation (in) 2.30E-04

Original Offset
Time (seconds) 1285
Desired Offset (in) 6.350
Minimun Offset (in) 6.34993
Maximum Offset (in) 6.7191
Mean Offset (in) 6.37546
Standard Deviation (in) 0.06993
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The result shows two different trends.  First, when the mesh is very small, the 

sampling ratio has a significant effect on mesh quality.  The mesh in Figure 4.35a is 

mostly quadrilateral mesh, but many of the elements that are not affected by boundaries 

are odd shapes and sizes, compared to mesh in Figure 4.35b, c, and d. 

The second trend is that for the large mesh in this example, some boundary 

problems arise and a number of triangular elements are formed.  It is likely that with a 

higher sampling rate, the larger mesh would not have some of the partition boundary 

problems.  The result will take longer with a very high sampling rate, however.  For 

larger mesh sizes, the percentage of elements that are likely to have quality problems due 

to surface and partition boundaries is higher than for smaller mesh sizes, also.   

From Figure 4.35 and the statistics given in Table 4-29, it can be seen that the best 

result is for the case with 0.42 size mesh (c).  The case for a mesh size of 0.32 also gives 

good results.  This study shows that for a given geometry and sampling rate, not all mesh 

sizes will give a good result.  Small elements that give a poor result are mostly due to 

sampling rate.  Larger elements that give a poor result are due more to boundary effect. 
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Figure 4.35:  Surface mesh with increasing size 
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Table 4-29:  Mesh quality for varying mesh size 

 
 

4.3.2 Mesh with varying sampling rate 

In this study, the number of partitions, mesh size, and input surface are all kept 

the same as the sampling rate is decreased.  The surface is the same as in the example in 

Section 4.2.3 above.  As in Section 4.2.3, there surface is divided into four partitions.  

The mesh size used is 0.425 inches.  The mesh results are shown in Figure 4.36 and the 

quality statistics are shown in Table 4-30.  It is clear visually and from the statistics that 

as the sampling rate decreases, the mesh quality decreases.  Figure 4.36a corresponds to a 

sampling criterion of 60.  This means that the length of the input part is divided by 60 to 

establish the universal size criterion used to sample the input face.  Figure 4.36b 

corresponds to a sampling criterion of 50.  Figure 4.36c corresponds to a sampling 

criterion of 30.  Figure 4.36d corresponds to a sampling criterion of 20.  The decrease in 

sampling rate not only leads to the formation of poor quadrilateral elements, but 

0.22 0.32 0.42 0.6
Output Value Value Value Value
Number of Quads 1783 862 480 221
Number of Tris 97 2 0 6
Percentage Tris 5.2% 0.2% 0.0% 2.6%
Quad Skew

Min 0.00 0.00 0.00 0.00
Max 42.35 17.32 14.06 38.70
Mean 7.62 4.50 3.12 4.14
Standard Deviation 8.53 3.33 2.47 5.79

Quad Aspect Ratio
Min 1.0010 1.0019 1.0041 1.0047
Max 2.9787 2.1213 1.3533 1.7235
Mean 1.2507 1.1617 1.1258 1.1408
Standard Deviation 0.2637 0.1462 0.0756 0.1157

Quad Side Length
Min (%desired length) 37.66% 35.44% 78.23% 62.50%
Max (%desired length) 170.45% 136.92% 126.59% 145.83%
Mean (%desired length) 100.09% 99.25% 100.94% 103.75%
Std. Dev. (%desired length) 19.15% 15.08% 10.88% 1.16%

Desired Quad Side Length
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triangular elements are also generated by the quality checks as the quadrilateral quality 

falls. 
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Figure 4.36:  Surface mesh with decreasing sampling rate 
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For a sampling rate of 60 for this example, there are no elements with a skew over 

ten degrees, and the average aspect ratio is less than 10% past square.  The mean side 

length is almost exactly the requested value, and the maximum and minimum values are 

only 20% above or below the desired length. 

 
 

Table 4-30:  Quality for mesh with varying sampling criteria 

 
 
 
  

Table 4-31 shows the results of the examples presented in Section 4.2 with 

sampling rates to show the effect of sampling rate on algorithm performance.  The results 

do not follow a direct trend indicating that a higher sampling rate (smaller sample size) 

produces better results.  This indicates that sampling rate, mesh size, number of 

partitions, etc. all contribute to mesh quality.  The results in Table 4-30 indicate that with 

all other values held constant, a higher sampling rate does produce better results, as 

would be expected. 

20 30 50 60
Output Value Value Value Value
Number of Quads 474 480 480 480
Number of Tris 26 2 0 0
Percentage Tris 5.2% 0.4% 0.0% 0.0%
Quad Skew

Min (degrees) 0.00 0.00 0.00 0.00
Max (degrees) 32.91 18.26 14.18 9.48
Mean (degrees) 5.21 4.36 3.11 2.43
Standard Deviation (degrees) 5.05 3.34 2.30 2.06

Quad Aspect Ratio
Min 1.0139 1.0007 1.0029 1.0049
Max 2.0264 1.6864 1.2668 1.2342
Mean 1.2469 1.1573 1.0868 1.0688
Standard Deviation 0.2626 0.1232 0.0607 0.0508

Quad Side Length
Min (%desired length) 0.2175 0.2909 0.3513 0.3397
Max (%desired length) 0.5951 0.5818 0.5097 0.5040
Mean (%desired length) 0.4252 0.4254 0.4236 0.4232
Std. Dev. (%desired length) 0.0778 0.0620 0.0354 0.0264

Sampling Criteria
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Table 4-31:  Effect of sampling size on quality 

 
 

4.4 Summary 

This chapter presents several example problems that test the performance of the 

cellular material design method presented in Chapter 3.  The examples vary in number 

and complexity of partition boundaries and severity and type of curvature.  A summary of 

the examples is given below.  The examples were chosen to represent basic types of 

geometry that could be present on arbitrary input surfaces. 

Conic Concave Flat Saddle Hemishere Cylinder Convex
Output Value Value Value Value Value Value Value
Sample Size 0.0296 0.0250 0.0557 0.0400 2.5492 0.1250 0.1426
Sample Size (%desired length) 26.91% 29.41% 31.83% 36.36% 38.60% 39.06% 39.83%
Quad Skew

Min (degrees) 1.50E-05 0 0.0214 0.0012 0.0163 0 0
Max (degrees) 30.592 22.997 20.403 39.927 25.005 17.325 15.820
Mean (degrees) 5.602 2.462 4.218 6.927 4.870 4.503 3.343
Standard Deviation (degrees) 5.713 2.826 3.861 6.757 4.302 3.334 2.897

Quad Aspect Ratio
Min 1.0010 1.0029 1.0054 1.0013 1.0006 1.0019 1.0034
Max 2.8397 3.0799 2.1086 2.2816 2.4136 2.1213 1.6953
Mean 1.1620 1.2318 1.2085 1.1679 1.1731 1.1617 1.1726
Standard Deviation 0.2418 0.2529 0.2433 0.1877 0.0205 0.1462 0.1343

Quad Side Length
Min (%desired length) 33.36% 35.32% 46.97% 35.41% 44.06% 35.44% 68.22%
Max (%desired length) 196.52% 152.74% 128.72% 211.60% 193.64% 136.92% 136.47%
Mean (%desired length) 97.60% 97.18% 97.59% 99.39% 98.32% 99.25% 101.11%
Std. Dev. (%desired length) 13.78% 15.52% 15.05% 16.55% 14.38% 15.08% 14.75%

Geometry
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Figure 4.37:  Summary list of example problems 

 
 

 

 

The quality of the mesh on the input surface and the offset distance are evaluated 

for each example.  The surface mesh is evaluated for percentage of triangular elements, 

skew, aspect ratio, and side length.  Skew and aspect ratio are quality measures borrowed 

from finite element analysis.  A standard good mesh for analytical purposes is skew less 

than 30 degrees and aspect ratio less than three.  These quality measures are used as a 

guideline for mesh quality.  The side lengths should be as close to the desired length as 

possible.  The offset distance is measured from each corner of each element on the input 

surface to the corresponding offset element corner.  This value should match the input 

desired offset distance. 

The first goal for the method presented in this thesis is to produce surface mesh 

that consists of square elements.  The results show that the surfaces in the examples can 

be effectively meshed with mostly quadrilateral elements.  For some cases, there is a 

relatively high percentage of triangular elements at partition boundaries.  Even in these 

cases, there are large areas of good quality elements away from the boundaries.  There 

were very few occurrences of elements that exceeded the aspect ratio or skew quality 

limits, which measure how far from square the elements have deviated.  In all cases 

Example Description Features
1 Two planar surfaces meeting at an angle Simple geometry, single partition boundary
2 Half Cylinder Uniform curvature in one direction, multiple partition boundaries
3 Planar surface meeting a concave surface Dissimilar geometries interfacing, multiple partition boundaries
4 Planar surface meeting a convex surface Dissimilar geometries interfacing, multiple partition boundaries
5 Circular Hemisphere Uniform curvature in multiple directions, multiple partition boundaries
6 Irregular Conic non-uniform curvature in one direction, uniform curvature in one direction
7 Surface with a saddle point, one partition Complex curvature, single partition
8 Surface with a saddle point, two partitions Complex curvature, multiple partitions
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where a maximum value for skew or aspect ratio exceeded the limit, the value is well 

above the mean and likely represents a single element among the hundreds applied to the 

surface.  The average side lengths for all examples are within 3% of the input length.  

This demonstrates that good quality mesh that is close to square can be created using the 

method from Chapter 3.   

The second goal is to create an offset mesh that is offset a specified distance from 

the input surface.  Error values for average offset lengths for all examples are less than 

1% of the desired offset for both methods.  The method that offsets only element corners 

is much faster and produces results that are comparable or preferable.  These results show 

that both methods discussed in Chapter 3 are effective in creating an offset mesh that 

provides a volume to fill with cellular material primitives. 

The final goal is to insert cellular material primitives into the three-dimensional 

mesh created by the surface and offset meshes.  The examples above show that a 

continuous, oriented cellular material design can be created in all cases.  The original 

design for cellular material was developed for cubic primitives.  However, the triangular 

prisms formed by triangular element can be fit with complimentary cellular material 

designs to maintain continuity with cubic primitives.  Physically, the corresponding 

cellular material in triangular prisms is likely stiffer than in the cubic primitive, so it 

would not cause weaknesses in the structure.  Triangular elements are undesirable for 

uniformity and optimization, but their presence can be accommodated.  An acceptable 

cellular material design was produced for all example problems. 
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5 Conclusion 

Advances in rapid manufacturing technologies have expanded its possible 

applications.  As these new manufacturing tools evolve, so too must tools for the design 

of new structures.  The purpose of this thesis is to present a method for designing cellular 

material, which can only be produced with rapid manufacturing technology and for which 

design tools are unavailable. 

Chapter 2 is a literature and patent review.  Two-dimensional and three-

dimensional meshing and offsetting methods developed for other applications are studied 

for possible use.  Regular cellular material designs and manufacturing methods are also 

investigated in order to understand how these materials are currently made and designed. 

Chapter 3 presents a new method for cellular material design.  An STL 

representation of a surface is the input.  A volume is created which is filled with cellular 

material primitives to create a continuous cellular structure design that entirely covers the 

surface.  It is a completely automated process that can produce cellular material of almost 

any design. 

Chapter 4 is a collection of example problems that demonstrate the function of the 

design tool for surfaces of various types of geometry.  The examples show that good 

quality surface mesh can be created, the offsetting function is accurate, and that a 

continuous cellular structure design is created for each case. 

This final chapter summarizes conclusions and accomplishments and offers 

recommendations for future work. 
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5.1   Conclusions 

The goal of the research presented above is to develop a tool to make the use of 

meso-scale cellular structure more feasible for a wide range of applications.  Three 

distinct goals were set forth in the opening chapter.  The first goal was to apply square 

(quadrilateral) mesh to the input surface.  The second goal was to create a complimentary 

mesh on a surface offset from the original in order to create a volume in which to place 

cellular material.  The third goal was to insert cellular material primitives to create a 

cellular structure design for the input surface.  The following are conclusions drawn from 

the research presented in this thesis. 

5.1.1  Conclusion One:  Surface Mesh 

Several example problems with detailed results were presented in Chapter 4 to 

demonstrate the meshing function.  Some statistics that pertain specifically to the surface 

mesh quality are summarized in Table 5-1.  From the table, it can be seen that most cases 

produce very few triangular elements.  Some cases produce a relatively large number of 

triangular elements.  These cases pertain to examples where complicated partition 

boundaries are present.  It should be noted that mesh sizes and sampling rates were 

chosen to be realistic, to produce a result efficiently, and that could be reasonable viewed 

in a printed figure.  If a smaller mesh size or higher sampling rate were chosen for the 

surface the percentage of triangular elements could likely be decreased. 

Also shown in Table 5-1 are average values for skew, aspect ratio and side length 

for the quadrilateral elements in each example.  Average side lengths are all within 3% of 
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the input desired length, and average skew for all examples is less than ten degrees.  

Aspect ratio, like percentage of triangular elements, is considerably affected by the 

boundaries, and the inputs for the examples presented were not optimized for aspect ratio.  

Still, all of the example aspect ratios are well below three, with few above 1.17. 

Table 5-2 shows results that have been improved by increasing the sampling rate.  

These results show that very good square mesh can be produced with a high sampling 

rate.  

 
 

Table 5-1:  Surface mesh quality summary 

 
 

 
 
 
 
 
 

Table 5-2:  Quality summary for high sampling rate 

 
 

 
 
Therefore, the goal of creating quadrilateral mesh for the input surface is reasonably met. 

Surface Geometry Quads Tris %Tris
Avg. Skew 
(degrees)

Avg. Aspect 
Ratio

Avg. Side 
Length 

(%desired)
Planar Surface/Concave Surface (60) 480 0 0.00% 2.43 1.07 100.04%

Surface Geometry Quads Tris %Tris
Avg. Skew 
(degrees)

Avg. Aspect 
Ratio

Avg. Side 
Length 

(%desired)
Two Planar Surfaces 466 2 0.42% 4.22 1.21 97.59%
Half Cylinder 1153 9 0.77% 2.46 1.23 97.18%
Planar Surface/Concave Surface 862 2 0.23% 4.50 1.16 99.25%
Planar Surface/Convex Surface 614 2 0.32% 3.34 1.17 101.11%
Hemisphere 480 136 22.08% 6.93 1.17 99.39%
Conic 499 62 11.05% 5.60 1.16 97.60%
Saddle Surface, One Partition 311 9 2.81% 4.87 1.17 98.32%
Saddle Surface, Two Partition 294 76 20.54% 4.81 1.15 99.85%



 154

5.1.2  Conclusion Two:  Offsetting 

Examples demonstrating the offsetting function are given in Chapter 4.  Several 

examples have straight-forward offset surfaces, and those results show that the offset is 

very accurate.  Average offset data for the examples from Chapter 4 are given in Table 

5-3.  All results are within 1% of the desired value.  The table also shows the time 

required to run each of the offset methods.  The Fast offset is much faster, and the results 

are closer to the requested value for all examples, but often not by a significant amount.  

Therefore, not only is the offset calculated accurately, but with the faster method 

developed during this research it is also efficient. 

 
 

Table 5-3:  Offset data summary 

 
 

5.1.3 Conclusion 3:  Cellular material 

For each of the examples presented in Chapter 4, continuous cellular structure 

was successfully created.  The desired pattern of cellular material was created to fit a 

cubic element.  However, it was shown that a similar pattern could also be designed to fit 

the triangular prism elements generated that would maintain continuity with neighboring 

Surface Geometry

Offset Time 
Fast Method 

(seconds)

Offset Time 
Slow Method 

(seconds)

Average Offset 
Fast Method 
(%Desired)

Average Offset 
Slow Method 
(%Desired)

Two Planar Surfaces 53 584 100.54% 100.71%
Half Cylinder 1352 286137 99.991% 99.994%
Planar Surface/Concave Surface 195 2629 100.05% 100.48%
Planar Surface/Convex Surface 118 1607 100.20% 100.38%
Hemisphere 109 23699 99.98% 100.06%
Conic 121 33584 99.99% 100.03%
Saddle, one partition 64 1300 99.9997% 100.31%
Saddle, two partitions 68 1285 99.99994% 100.40%
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structure.  The cellular material design for the triangular prisms is likely stiffer than the 

corresponding structure for cubic elements and should not represent a structural 

weakness.  There were no orientation or continuity issues present for any of the 

examples. 

5.2   Contributions 

The major contribution of this thesis is a tool that creates a cellular structure 

design for an input surface.  The method is described in Chapter 3, and examples are 

presented in Chapter 4.  Some of the major accomplishments are listed below. 

5.2.1 System of operations 

As described in Chapter 2, meshing and offsetting methods have been previously 

developed that can produce the same output as the steps of the method developed in this 

thesis.  However, because the existing methods are not specifically developed for cellular 

material design, they often do not produce results that meet the objectives of this 

application.  Meshing tools for finite element analysis are concerned with analytical 

results instead of uniformity of shape.  The meshing method developed in this thesis is 

designed to produce large areas of essentially square elements.  Some elements that 

deviate from square or triangular elements are produced, but these are generally only on 

partition boundaries.  Also, given only an input surface, several different methods would 

have to be combined to get the same result as the method presented in this thesis, and the 

output of a commercial finite element tool might be difficult to combine with output from 
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some other offsetting tool, etc.  Therefore, the system of operations put together to 

coordinate the different steps with the express purpose of creating cellular material is a 

major contribution of this research. 

5.2.2 Efficient offsetting 

Another major contribution of this research is an efficient offsetting technique.  

The original offsetting technique proposed for use in the cellular design method described 

in this thesis was borrowed from an existing method [14].  The processing time of this 

borrowed method was sometimes several hours or days, even for relatively low sampling 

rates.  The new method developed specifically to only offset element corners cut the 

processing time considerably.  This makes it a more viable solution.    

5.3   Future work 

The method presented in this thesis produces good results.  However, some areas 

for improvement have been identified. 

5.3.1 Element quality 

A common occurrence after boundary matching and the second quality check is a 

group of adjacent triangular elements that were produced by different operations.  The 

matched mesh shown in Figure 5.1 has a triangular element next to an element with a 

large interior angle.  The corrected mesh shows that the quality check corrected the 
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interior angle creating two adjacent triangular elements that combine to form a well 

shaped quadrilateral element.  A relatively simple way to improve mesh quality is to 

combine adjacent triangular faces, as shown in the figure.  This could be easily 

incorporated to the current process and would not significantly increase calculation time. 

 
 

 
Figure 5.1:  Possible mesh correction 

 

5.3.2 Partition orientation 

Currently, during the flattening procedure, each partition is reoriented before 

flattening.  Depending on the normal vectors of each face in the partition, the partition 

will rotate to varying degrees.  The mesh in Figure 5.2 represents two partitions that were 

rotated different amounts during flattening.  As a result, the two meshes do not match 

well, and the mesh on the far left is not in line with the boundaries of the surface.  This is 

an undesirable result.  To correct this, an orientation control could be added to prevent 

unwanted rotation.   

 
 

Matched Mesh After Quality Check Possible Mesh Improvement
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Figure 5.2:  Rotated partition example 

 

5.3.3 Cellular material library 

There already exist many cellular material designs that are good for different 

applications.  Currently, the method for cellular material design described in this thesis 

references a pattern for the desired design, but each time a different pattern is desired the 

reference to the pattern must be manually changed.  Also, a comprehensive collection of 

patterns formatted for input to the method described in this thesis has not been compiled.  

Therefore, a library of different cellular material patterns that could easily be referenced 

is a desirable improvement.  
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5.3.4  FEM interface 

For many applications, some analysis may be performed on the cellular structure 

before production.  Finite element analysis would be the most likely tool to check the 

structure.  Finite element pre-processors are also good for visualization because elements 

can be grouped, hidden, etc.  Therefore a goal of future work is to add a function to write 

out finite element input for some of the more prominent commercial tools on the market. 

5.4 Closure 

Rapid manufacturing allows the generation of structure that was previously 

impossible.  The freedom to design almost any shape or size imaginable opens up a world 

of possibilities for new forms and functions.  Now more than ever, specialized tools are 

needed to help take advantage of the unique opportunities offered by these new 

manufacturing techniques.  That is the motivation behind the research.  It is hoped that 

the tool developed herein can serve to make customized cellular structure a realistic 

solution for many applications. 



 160

REFERENCES 
 
 
 

1. McCartney J, Hinds BK, Seow BL.  The flattening of triangulated surfaces   
      incorporating darts and gussets.  Computer-Aided Design, 1999,  31:249-260 
 
2. Tam A, Joneja A, Tang K, Yao Z. A surface Development Method with   

Application in Footwear CAD/CAM. Computer-Aided Design & Applications,    
2007, Vol. 4, Nos. 1-4, pp. 67-77 
 

3. Zhong Y, Xu B.  A physically based method for triangulated surface flattening.  
Computer-Aided Design, 2006, 38:1062-1073 

 
4. Barry J. Quadrilateral mesh generation in polygonal regions. Computer-Aided 

Design, 1995, Vol. 27, No. 3, pp. 209-222 
 
5. Park C, Noh J, Jang I, Kang J.  A new automated scheme of quadrilateral mesh 

generation for randomly distributed line constraints.  Computer-Aided Design, 
2007, 39:258-267 

 
6. Owen SJ. A survey of unstructured mesh generation technology.  Proceedings of 

the 7th International Meshing Roundtable, Sandia National Laboratories, 1998. p. 
239-267 

 
7. Lo SH.  Finite element mesh generation and adaptive meshing.  Progress in 

Structural Engineering and Materials.  2002, 4:381-399 
 
8. Lai M, Benzley S, White D.  Automated hexahedral mesh generation by 

generalized multiple source to multiple target sweeping.  International Journal for 
Numerical Methods in Engineering.  2000, 49:261-275  

 
9. Kawamura Y, Islam M, Sumi Y.  A strategy of automatic hexahedral mesh 

generation by using an improved whisker-weaving method with a surface mesh 
modification procedure.  Engineering with Computers, 2008, 24:215-229 

 
10. Becker TD, Meyers RJ.  Seams and wedges in plastering:  A 3-D hexahedral 

mesh generation algorithm.  Engineering Computations.  1993, 9:83-93 
 

11. Owen SJ.  Hex-dominant mesh generation using 3D constrained triangulation.  
Computer-Aided Design.  2001, 33:211-220 

 
12. Zhang H, Zhoa G, Ma X.  Adaptive generation of hexahedral element mesh using 

an improved grid-based method.  Computer-Aided Design, 2007, 39:914-928 



 161

13.  Lee YK, Yang DY.  A grid-based approach to non-regular mesh generation for 
automatic remeshing with metal forming analysis.  Communications in Numerical 
Methods in Engineering.  2000, 16:625-635 

 
14. Chen Y, Wang H, Rosen D, Rossignac J.  A Point-Based Offsetting Method of 

Polygonal Meshes. 
 

15. Queheillalt D, Murty Y, Wadley H. Mechanical properties of an extruded  
pyramidal lattice truss sandwich structure.  Scripta Materialia, 2008, 58:76-79 

 
16. Sypeck D, Wadley H.  Cellular Metal Truss Core Sandwich Structures.  

Advanced Engineering Materials, 2002, 4, No. 10, pp. 759-764 
 

17. Daily, Carl. US Patent No. 6170560, 2001 
 

18. Jones, Ronald.  US Patent No. 6630093, 2003 
 
19. Gervasi, Vito. US Patent No. 6641897, 2003 

 
20. Wang H, Rosen D. Parametric Modeling Method for Truss Structures.  

Proceedings of ASME Design Engineering Technical Conferences, 2002 
 

21. Jacobs, Paul F.  Rapid Prototyping & Manufacturing:  Fundamentals of 
Stereolithography. Society of Manufacturing Engineers, Dearborn, MI.  1992 

 
22. Varady T, Facello M, Terek Z.  Automatic extraction of surface structures in 

digital shape recognition.  Computer-Aided Design, 2002, 39:379-388 
 

23. Razdan A, Bae M.  A hybrid approach to feature segmentation of triangle meshes.  
Computer-Aided Design, 2003, 35:783-789 

 
24. Mangan A, Whitaker R.  Partitioning 3D Surface Meshes Using Watershed 

Segmentation.  IEEE Transactions on Visualizations and Computer Graphics, 
Vol. 5, No. 4, October-December 1999 

 
25. Robinson J.  CRE method of element testing and Jacobian shape parameters.  

Engineering Computations. 1987, Vol. 4, June, p. 113-118 
 

26. S. H. Lo.  Generating quadrilateral elements on plane and over curved surfaces.  
Conputers & Structures, 1989, 31:421-426 

 
27. S. Weyer, A. Frohlich, H. Riesch-Oppermann, L. Cizelj, M. Kovac.  Automatic 

finite element meshing of planar Voronoi tessellations.  Engineering Fracture 
Mechanics.  2002, 69:945-958 

 
 


	1 Introduction
	1.1   Background
	1.2   Motivation
	1.3   Goals
	1.4   Organization of Thesis

	2  Literature Review and Research Gap
	2.1 Literature Review
	2.1.1 Flattening
	2.1.2 Automated Mesh Creation
	2.1.2.1 Quadrilaterals 
	2.1.2.2 Hexahedral Mesh

	2.1.3 Offsetting
	2.1.4 Cellular Structure Design 
	2.1.4.1 Regular Periodic Cellular Structures
	2.1.4.2 Conformal Cellular Structures


	2.2 Research Gap
	2.3 Summary

	3  Algorithm Description
	3.1 STL Processing
	3.2 Sampling
	3.2.1 Line Sampling
	3.2.2 Face Sampling

	3.3 Partitioning
	3.4 Flattening
	3.5 Mesh Generation
	3.5.1 Inside Points
	3.5.2 Boundary Points
	3.5.3 Corners

	3.6 Boundary Matching
	3.7 Offsetting
	3.8 Hexahedral Element Formation
	3.9 Truss Definition
	3.10  Detailed Example
	3.11  Summary

	4  Examples
	4.1 Evaluation Criteria
	4.2 Example Problems
	4.2.1 Two planar surfaces meeting at an angle
	4.2.2 Cylindrical surface
	4.2.3 Flat plane meeting a concave surface
	4.2.4 Flat plane meeting a convex surface
	4.2.5 Spherical surface
	4.2.6 Conical surface with varying curvature
	4.2.7 Surface with a saddle point with one partition
	4.2.8 Surface with a saddle point with two partitions

	4.3 Sensitivity
	4.3.1 Mesh size sensitivity
	4.3.2 Mesh with varying sampling rate

	4.4 Summary

	5  Conclusion
	5.1   Conclusions
	5.1.1  Conclusion One:  Surface Mesh
	5.1.2  Conclusion Two:  Offsetting
	5.1.3 Conclusion 3:  Cellular material

	5.2   Contributions
	5.2.1 System of operations
	5.2.2 Efficient offsetting

	5.3   Future work
	5.3.1 Element quality
	5.3.2 Partition orientation
	5.3.3 Cellular material library
	5.3.4  FEM interface

	5.4 Closure


